C++中的23种算法
2012-05-29 11:10:16 来源:WEB开发网1.河内之塔
说明
河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时
北越的首都,即现在的胡志明市;1883年法国数学家Edouard Lucas曾提及这个故事,据说创世
纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64
个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根
石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬
运完毕之时,此塔将毁损,而也就是世界末日来临之时。
解法如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘
子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处
理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式
的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则
所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,
如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。
#include <stdio.h>
void hanoi(int n, char A, char B, char C) {
if(n == 1) {
printf("Move sheet %d from %c to %c\n", n, A, C);
}
else {
hanoi(n-1, A, C, B);
printf("Move sheet %d from %c to %c\n", n, A, C);
hanoi(n-1, B, A, C);
}
}
int main() {
int n;
printf("请输入盘数:");
scanf("%d", &n);
hanoi(n, 'A', 'B', 'C');
return 0;
}
2.超长整数运算(大数运算)
说明基于记忆体的有效运用,程式语言中规定了各种不同的资料型态,也因此变数所可以表
达的最大整数受到限制,例如123456789123456789这样的整数就不可能储存在long变数中(例
如C/C++等),我们称这为long数,这边翻为超长整数(避免与资料型态的长整数翻译混淆),或
俗称大数运算。
解法一个变数无法表示超长整数,则就使用多个变数,当然这使用阵列最为方便,假设程式
语言的最大资料型态可以储存至65535的数好了,为了计算方便及符合使用十进位制的习惯,让
每一个阵列元素可以储存四个位数,也就是0到9999的数,例如:
很多人问到如何计算像50!这样的问题,解法就是使用程式中的乘法函式,至于要算到多大,就
看需求了。
由于使用阵列来储存数值,关于数值在运算时的加减乘除等各种运算、位数的进位或借位就必
须自行定义,加、减、乘都是由低位数开始运算,而除法则是由高位数开始运算,这边直接提
供加减乘除运算的函式供作参考,以下的N为阵列长度。
void add(int *a, int *b, int *c) {
int i, carry = 0;
for(i = N - 1; i >= 0; i--) {
c[i] = a[i] + b[i] + carry;
if(c[i] < 10000)
carry = 0;
else { // 进位
c[i] = c[i] - 10000;
carry = 1;
}
}
}
void sub(int *a, int *b, int *c) {
int i, borrow = 0;
for(i = N - 1; i >= 0; i--) {
c[i] = a[i] - b[i] - borrow;
if(c[i] >= 0)
borrow = 0;
else { // 借位
c[i] = c[i] + 10000;
borrow = 1;
}
}
}
void mul(int *a, int b, int *c) { // b 为乘数
int i, tmp, carry = 0;
- ››算法大全(3) 二叉树
- ››算法
- ››算法从哪学起
更多精彩
赞助商链接