WEB开发网
开发学院软件开发C++ C++中的23种算法 阅读

C++中的23种算法

 2012-05-29 11:10:16 来源:WEB开发网   
核心提示:int i, j, s;if(left < right) {s = number[(left+right)/2];i = left - 1;j = right + 1;while(1) {while(number[++i] < s) ; // 向右找while(number[--j] > s) ; /
int i, j, s;

if(left < right) {

s = number[(left+right)/2];

i = left - 1;

j = right + 1;

while(1) {

while(number[++i] < s) ; // 向右找

while(number[--j] > s) ; // 向左找

if(i >= j)

break;

SWAP(number[i], number[j]);

}

quicksort(number, left, i-1); // 对左边进行递回

quicksort(number, j+1, right); // 对右边进行递回

}

}

19.快速排序法(三)

说明

之前说过轴的选择是快速排序法的效率关键之一,在这边的快速排序法的轴选择方式更加快了

快速排序法的效率,它是来自演算法名书Introduction to Algorithms 之中。

解法

先说明这个快速排序法的概念,它以最右边的值s作比较的标准,将整个数列分为三个部份,

一个是小于s的部份,一个是大于s的部份,一个是未处理的部份,如下所示:

在排序的过程中,i 与j 都会不断的往右进行比较与交换,最后数列会变为以下的状态:

然后将s的值置于中间,接下来就以相同的步骤会左右两边的数列进行排序的动作,如下所示:

然后将s的值置于中间,接下来就以相同的步骤会左右两边的数列进行排序的动作,如下所示:

整个演算的过程,直接摘录书中的虚拟码来作说明:

QUICKSORT(A, p, r)

if p < r

then q <- PARTITION(A, p, r)

QUICKSORT(A, p, q-1)

QUICKSORT(A, q+1, r)

end QUICKSORT

PARTITION(A, p, r)

x <- A[r]

i <- p-1

for j <- p to r-1

do if A[j] <= x

then i <- i+1

exchange A[i]<->A[j]

exchange A[i+1]<->A[r]

return i+1

end PARTITION

一个实际例子的演算如下所示:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define MAX 10

#define SWAP(x,y) {int t; t = x; x = y; y = t;}

int partition(int[], int, int);

void quicksort(int[], int, int);

int main(void) {

int number[MAX] = {0};

int i, num;

srand(time(NULL));

printf("排序前:");

for(i = 0; i < MAX; i++) {

number[i] = rand() % 100;

printf("%d ", number[i]);

}

quicksort(number, 0, MAX-1);

printf("\n排序后:");

for(i = 0; i < MAX; i++)

printf("%d ", number[i]);

printf("\n");

return 0;

}

int partition(int number[], int left, int right) {

int i, j, s;

s = number[right];

i = left - 1;

for(j = left; j < right; j++) {

if(number[j] <= s) {

i++;

SWAP(number[i], number[j]);

}

}

SWAP(number[i+1], number[right]);

return i+1;

}

void quicksort(int number[], int left, int right) {

int q;

if(left < right) {

q = partition(number, left, right);

quicksort(number, left, q-1);

quicksort(number, q+1, right);

}

}

20.多维矩阵转一维矩阵

说明

有的时候,为了运算方便或资料储存的空间问题,使用一维阵列会比二维或多维阵列来得方便,

例如上三角矩阵、下三角矩阵或对角矩阵,使用一维阵列会比使用二维阵列来得节省空间。

解法

以二维阵列转一维阵列为例,索引值由0开始,在由二维阵列转一维阵列时,我们有两种方式:

上一页  10 11 12 13 14 15 16 17 18  下一页

Tags:算法

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接