WEB开发网      婵犵數濮烽弫鍛婄箾閳ь剚绻涙担鍐叉搐绾剧懓鈹戦悩瀹犲闁汇倗鍋撻妵鍕箛閸洘顎嶉梺绋款儑閸犳劙濡甸崟顖氬唨闁靛ě浣插亾閹烘鈷掗柛鏇ㄥ亜椤忣參鏌″畝瀣暠閾伙絽銆掑鐓庣仭缁楁垿姊绘担绛嬪殭婵﹫绠撻、姘愁樄婵犫偓娴g硶鏀介柣妯款嚋瀹搞儱螖閻樺弶鍟炵紒鍌氱Ч瀹曟粏顦寸痪鎯с偢瀵爼宕煎☉妯侯瀳缂備焦顨嗗畝鎼佸蓟閻旈鏆嬮柣妤€鐗嗗▓妤呮⒑鐠団€虫灀闁哄懐濮撮悾鐤亹閹烘繃鏅濋梺闈涚墕濡瑩顢欒箛鏃傜瘈闁汇垽娼ф禒锕傛煕閵娿儳鍩f鐐村姍楠炴﹢顢欓懖鈺嬬幢闂備浇顫夊畷妯肩矓椤旇¥浜归柟鐑樻尭娴滃綊姊虹紒妯虹仸闁挎洍鏅涜灋闁告洦鍨遍埛鎴︽煙閼测晛浠滃┑鈥炽偢閹鈽夐幒鎾寸彇缂備緡鍠栭鍛搭敇閸忕厧绶炴俊顖滅帛濞呭洭姊绘担鐟邦嚋缂佽鍊垮缁樼節閸ャ劍娅囬梺绋挎湰缁嬫捇宕㈤悽鍛婄厽閹兼番鍨婚埊鏇㈡煥濮樿埖鐓熼煫鍥ュ劤缁嬭崵绱掔紒妯肩畺缂佺粯绻堝畷姗€濡歌缁辨繈姊绘担绛嬪殐闁搞劋鍗冲畷顖炲级閹寸姵娈鹃梺缁樻⒒閳峰牓寮崒鐐寸厱闁抽敮鍋撻柡鍛懅濡叉劕螣鐞涒剝鏂€闂佺粯鍔曞Ο濠囧吹閻斿皝鏀芥い鏃囨閸斻倝鎽堕悙鐑樼厱闁哄洢鍔屾晶顖炴煕濞嗗繒绠婚柡灞界Ч瀹曨偊宕熼鈧▍锝囩磽娴f彃浜炬繝銏f硾椤戝洨绮绘ィ鍐╃厵閻庢稒岣跨粻姗€鏌ㄥ☉妯夹fい銊e劦閹瑩顢旈崟顓濈礄闂備浇顕栭崰鏍礊婵犲倻鏆﹂柟顖炲亰濡茶鈹戦埄鍐ㄧ祷妞ゎ厾鍏樺璇测槈閵忕姈鈺呮煏婢跺牆鍔撮柛鏂款槺缁辨挻鎷呯粙搴撳亾閸濄儳鐭撶憸鐗堝笒閺嬩線鏌熼崜褏甯涢柡鍛倐閺屻劑鎮ら崒娑橆伓 ---闂傚倸鍊搁崐鐑芥倿閿旈敮鍋撶粭娑樺幘濞差亜鐓涢柛娑卞幘椤斿棝姊虹捄銊ユ珢闁瑰嚖鎷�
开发学院WEB开发Jsp 用Java动态代理类实现记忆功能 阅读

用Java动态代理类实现记忆功能

 2008-01-05 19:26:40 来源:WEB开发网 闂傚倸鍊搁崐椋庢濮橆兗缂氱憸宥堢亱闂佸湱铏庨崰鏍不椤栫偞鐓ラ柣鏇炲€圭€氾拷闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鎻掔€梺姹囧灩閻忔艾鐣烽弻銉︾厵闁规鍠栭。濂告煕鎼达紕校闁靛洤瀚伴獮鎺楀箣濠靛啫浜鹃柣銏⑶圭壕濠氭煙閻愵剚鐏辨俊鎻掔墛缁绘盯宕卞Δ鍐冣剝绻涘畝濠佺敖缂佽鲸鎹囧畷鎺戭潩閹典焦鐎搁梻浣烘嚀閸ゆ牠骞忛敓锟�婵犵數濮烽弫鍛婃叏椤撱垹绠柛鎰靛枛瀹告繃銇勯幘瀵哥畼闁硅娲熷缁樼瑹閳ь剙岣胯鐓ら柕鍫濇偪濞差亜惟闁宠桨鑳堕崝锕€顪冮妶鍡楃瑐闁煎啿鐖奸崺濠囧即閵忥紕鍘梺鎼炲劗閺呮稒绂掕缁辨帗娼忛埡浣锋闂佽桨鐒﹂幑鍥极閹剧粯鏅搁柨鐕傛嫹闂傚倸鍊搁崐椋庢濮橆兗缂氱憸宥堢亱闂佸湱铏庨崰鏍不椤栫偞鐓ラ柣鏇炲€圭€氾拷  闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶銆冮崨鏉戠厺鐎广儱顦崡鎶芥煏韫囨洖校闁诲寒鍓熷铏圭磼濡搫顫岄梺璇茬箲濮樸劑鍩€椤掍礁鍤柛鎾跺枎椤繐煤椤忓嫬鐎銈嗘礀閹冲酣宕滄导瀛樷拺闂侇偆鍋涢懟顖涙櫠椤斿墽纾煎璺猴功缁夎櫣鈧鍠栭…閿嬩繆濮濆矈妲烽梺绋款儐閹瑰洤螞閸愩劉妲堟繛鍡楃箲濞堟﹢姊绘担椋庝覆缂傚秮鍋撴繛瀛樼矤閸撶喖宕洪埀顒併亜閹烘垵鈧綊寮抽鍕厱閻庯綆浜烽煬顒傗偓瑙勬磻閸楀啿顕i崐鐕佹Ь闂佸搫妫寸粻鎾诲蓟閵娾晜鍋嗛柛灞剧☉椤忥拷
核心提示:记忆是衍生自Lisp,Python,和Perl等过程性语言的一种设计模式,它可以对前次的计算结果进行记忆,用Java动态代理类实现记忆功能, 一个实现了记忆功能的函数, 带有显式的cache, 所以, 已经计算过的结果就能直接从cache中获得, 而不用每次都进行计算.记忆能显著的提升大计算量代码的效率. 而且是一种可

  记忆是衍生自Lisp,Python,和Perl等过程性语言的一种设计模式,它可以对前次的计算结果进行记忆。 一个实现了记忆功能的函数, 带有显式的cache, 所以, 已经计算过的结果就能直接从cache中获得, 而不用每次都进行计算.

  记忆能显著的提升大计算量代码的效率. 而且是一种可重用的方案.

  本文阐述了在java中使用这一模式的方法,并提供了一个可以提供上述功能的"记忆类":

Foo foo = (Foo) Memoizer.memoize(new FooImpl());

  这里,Foo是一个接口,它含有的方法是需要记忆的.FooImpl是Foo的一个实现.foo是Foo的一个引用.方法与FooImpl基本相同,区别在于Foo返回的值,会被缓存起来.单个记忆类的优点在于为任何类添加记忆功能是很简单的:定义一个包含需要记忆的方法的接口,然后调用memoize来实现一个实例.

  为了理解记忆类是怎么实现的,我们将分几步来解释.首先,我解释一下为何缓存能够在需要它的类中实现.然后,我测试一下如何为一个特定的类添加缓存包装器.最后,我解释一下如何才能使得一个缓存包装器能够通用于任意的类.

  为大计算量的程序添加缓存
 
  作为一个大计算量程序的例子,我们考虑PiBinaryDigitsCalculator这个例子-计算二进制数据pi.仅有的public方法calculateBinaryDigit带有一个参数:整数n,代表需要精确到的位数.例如,1000000,将会返回小数点后的一百万位,通过byte值返回-每位为0或者1.

public class PiBinaryDigitsCalculator {
/**
* Returns the coefficient of 2^n in the binary
* eXPansion of pi.
* @param n the binary digit of pi to calculate.
* @throws ValidityCheckFailedException if the validity
* check fails, this means the implementation is buggy
* or n is too large for sufficient PRecision to be
* retained.
*/
public byte calculateBinaryDigit(final int n) {
return runBBPAlgorithm(n);
}

private byte runBBPAlgorithm(final int n) {
// Lengthy routine goes here ...
}

}
  最简单直接的方法来缓存返回值可以通过修改这个类来实现:添加一个Map来保存之前计算得到的值,如下:

import java.util.HashMap;

public class PiBinaryDigitsCalculator {
private HashMap cache = new HashMap();
public synchronized byte calculateBinaryDigit(
final int n) {
final Integer N = new Integer(n);
Byte B = (Byte) cache.get(N);
if (B == null) {
byte b = runBBPAlgorithm(n);
cache.put(N, new Byte(b));
return b;
} else {
return B.bytevalue();
}
}
private byte runBBPAlgorithm(final int n) {
// Lengthy routine goes here ...
}
}
  calculateBinaryDigit方法首先会检查HashMap里面是否缓存了这个要害字-参数n,假如找到了,就直接返回这个值.否则,就会进行这个冗长的计算,并将结果保存到缓存里面.在添加进HashMap的时候,在原始类型和对象之间还要进行小小的转换.

  尽管这个方法是可行的,但是有几个缺点.首先,进行缓存的代码和正常的算法代码不是显著分开的.一个类,不仅负责进行计算,也要负责进行维护缓存数据.这样,要进行一些测试就会显得很困难.比如,不能写一个测试程序来测试这个算法持续地返回相同的值,因为,从第二次开始,结果都是直接从cache中获得了.

  其次,当缓存代码不再需要,移除它会变得困难,因为它和算法块地代码是紧密结合在一起的.所以,要想知道缓存是否带来了很高的效率提升也是很困难的,因为不能写一个测试程序是和缓存数据分开的.当你改进了你的算法,缓存有可能失效-但是这个时候你并不知道.

  第三,缓存代码不能被重用.尽管代码遵从了一个普通的模式,但是都是在一个类- PiBinaryDigitsCalculator里面.

  前面两个问题都可以通过构造一个缓存包装器来解决.
  缓存包装器

  通过使用Decorator模式,要分开计算代码和缓存代码是很轻易的.首先,定义一个接口,里面定义基本的方法.

public interface BinaryDigitsCalculator {

public byte calculateBinaryDigit(final int n);
}
  然后定义两个实现,分别负责两个任务:

public class PiBinaryDigitsCalculator
implements BinaryDigitsCalculator {

public byte calculateBinaryDigit(final int n) {
return runBBPAlgorithm(n);
}

private byte runBBPAlgorithm(final int n) {
// Lengthy routine goes here ...
}

}

import java.util.HashMap;

public class CachingBinaryDigitsCalculator implements
BinaryDigitsCalculator {

private BinaryDigitsCalculator binaryDigitsCalculator;
private HashMap cache = new HashMap();

public CachingBinaryDigitsCalculator(
BinaryDigitsCalculator calculator) {
this.binaryDigitsCalculator = calculator;
}

public synchronized byte calculateBinaryDigit(int n) {
final Integer N = new Integer(n);
Byte B = (Byte) cache.get(N);
if (B == null) {
byte b =
binaryDigitsCalculator.calculateBinaryDigit(n);
cache.put(N, new Byte(b));
return b;
} else {
return B.bytevalue();
}
}
}
  这是很之前的实现PiBinaryDigitsCalculator的一种简单的refactored版本. CachingBinaryDigitsCalculator包装了BinaryDigitsCalculator句柄,并增加了缓存,供calculateBinaryDigit的方法调用. 这种方法提高了代码的可读性与可维护性. 用户不能直接使用BinaryDigitsCalculator接口来实现算法,所以,假如需要关闭缓存块,将是很轻易实现的.

  还有,合适的测试程序很轻易写出来.比如,我们写一个假的BinaryDigitsCalculator实现,每次calculateBinaryDigit被调用,赋予相同的参数,返回不同的值. 这样,我们就能测试缓存是否工作了,因为假如每次都返回相同的值,则证实缓存是正常工作了. 这种测试在之前那种简单的实现是不可能的。

Tags:Java 动态 代理

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接