WEB开发网
开发学院数据库DB2 将 InfoSphere Warehouse 数据挖掘与 IBM Cognos ... 阅读

将 InfoSphere Warehouse 数据挖掘与 IBM Cognos 报告集成,第 2 部分: 使用 InfoSphere Warehouse 和 Cognos 检测偏差

 2009-12-31 00:00:00 来源:WEB开发网   
核心提示:简介在当前的很多 IT 应用中,及时发现可疑行为是一项很重要的任务,将 InfoSphere Warehouse 数据挖掘与 IBM Cognos 报告集成,第 2 部分: 使用 InfoSphere Warehouse 和 Cognos 检测偏差,以信用卡事务为例,如果一个用户表现出异常的购买行为(例如,并展示如何使

简介

在当前的很多 IT 应用中,及时发现可疑行为是一项很重要的任务。以信用卡事务为例。如果一个用户表现出异常的购买行为(例如,平常都是在廉价商店买东西,现在突然购买昂贵的珠宝),那么最好检查相应的事务,以跟踪欺诈行为。除了检测欺诈行为或恶意操纵外,偏差还可以用于其他一些场景。人力资源部门使用偏差检测来发现异常的雇员或求职者。如果仅凭固定的规则识别潜在的情况,则这些人可能被忽视。

偏离全局数据分布的数据记录称为离群值(outlier)。离群值处理通常不是一项完全自动化的任务。相反,数据挖掘用于指出有待分析师或专家进一步分析的数据记录。然后,析师或专家以此为依据决定是否采取行动。因此,一个先进的用户界面和交互模型是成功处理离群值的前提条件。Cognos 很适合完成这项任务。实际上,可以使用一个类似于本 系列 的 将 InfoSphere Warehouse 数据挖掘与 IBM Cognos 报告集成,第 1 部分:InfoSphere Warehouse 与 Cognos 集成架构概述 中创建的报告来可视化离群值。但是,要想充分利用 Cognos 显示离群值的潜力,需要采用一些更高级的技巧。首先,看看如何使用 “穿透钻取(drill-through)” 来创建交互式 Cognos 报告,以及如何链接报告。这将有助于总结信息,同时允许快速访问相关的异常数据记录。其次,学习如何从数据挖掘模型中提取出附加信息,这些附加信息可帮助专家理解离群值的性质。

本文中的实例是一个应用程序,该应用程序帮助一家银行的雇员识别行为异常的客户。这个应用程序可用于避免欺诈,或检测出需要特别关注的客户。下一小节将对偏差检测作一个概述,并展示如何使用 InfoSphere Warehouse 发现大型数据集中的离群值。随后的小节则阐述从挖掘模型中穿透钻取和提取信息的基础知识,并展示如何使用这两种技巧使偏差检测结果更容易理解和利用。

1 2 3 4 5 6  下一页

Tags:InfoSphere Warehouse 数据挖掘

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接