WEB开发网
开发学院软件开发Python Python 持久性管理 阅读

Python 持久性管理

 2007-03-30 12:29:39 来源:WEB开发网   
核心提示: 对象持久性如果希望透明地存储 Python 对象,而不丢失其身份和类型等信息,Python 持久性管理(2),则需要某种形式的对象序列化:它是一个将任意复杂的对象转成对象的文本或二进制表示的过程,同样,因而速度极快,而且实现起来要比如 ZODB 这样的数据库简单,必须能够将对象经过序列化后

对象持久性

如果希望透明地存储 Python 对象,而不丢失其身份和类型等信息,则需要某种形式的对象序列化:它是一个将任意复杂的对象转成对象的文本或二进制表示的过程。同样,必须能够将对象经过序列化后的形式恢复到原有的对象。在 Python 中,这种序列化过程称为 pickle,可以将对象 pickle 成字符串、磁盘上的文件或者任何类似于文件的对象,也可以将这些字符串、文件或任何类似于文件的对象 unpickle 成原来的对象。我们将在本文后面详细讨论 pickle。

假定您喜欢将任何事物都保存成对象,而且希望避免将对象转换成某种基于非对象存储的开销;那么 pickle 文件可以提供这些好处,但有时可能需要比这种简单的 pickle 文件更健壮以及更具有可伸缩性的事物。例如,只用 pickle 不能解决命名和查找 pickle 文件这样的问题,另外,它也不能支持并发地访问持久性对象。如果需要这些方面的功能,则要求助类似于 ZODB(针对 Python 的 Z 对象数据库)这类数据库。ZODB 是一个健壮的、多用户的和面向对象的数据库系统,它能够存储和管理任意复杂的 Python 对象,并支持事务操作和并发控制。(请参阅 参考资料,以下载 ZODB。)令人足够感兴趣的是,甚至 ZODB 也依靠 Python 的本机序列化能力,而且要有效地使用 ZODB,必须充分了解 pickle。

另一种令人感兴趣的解决持久性问题的方法是 Prevayler,它最初是用 Java 实现的(有关 Prevaylor 方面的 developerWorks 文章,请参阅 参考资料)。最近,一群 Python 程序员将 Prevayler 移植到了 Python 上,另起名为 PyPerSyst,由 SourceForge 托管(有关至 PyPerSyst 项目的链接,请参阅 参考资料)。Prevayler/PyPerSyst 概念也是建立在 Java 和 Python 语言的本机序列化能力之上。PyPerSyst 将整个对象系统保存在内存中,并通过不时地将系统快照 pickle 到磁盘以及维护一个命令日志(通过此日志可以重新应用最新的快照)来提供灾难恢复。所以,尽管使用 PyPerSyst 的应用程序受到可用内存的限制,但好处是本机对象系统可以完全装入到内存中,因而速度极快,而且实现起来要比如 ZODB 这样的数据库简单,ZODB 允许对象的数目比同时在能内存中所保持的对象要多。

上一页  1 2 3 4 5 6 7  下一页

Tags:Python 持久性 管理

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接