WEB开发网
开发学院软件开发Java 用 WEKA 进行数据挖掘,第 3 部分: 最近邻和服务器... 阅读

用 WEKA 进行数据挖掘,第 3 部分: 最近邻和服务器端库

 2010-06-23 00:00:00 来源:WEB开发网   
核心提示: 上述结果与我们用分类创建模型时的结果有何差异呢?使用最近邻的这个模型的准确率为 89 %,而分类模型的准确率只有 59 %,用 WEKA 进行数据挖掘,第 3 部分: 最近邻和服务器端库(7),所以这绝对是一个很好的开始,接近 90 % 的准确率是非常可以接受的,比如只有 50 个顾客,那么产品

上述结果与我们用分类创建模型时的结果有何差异呢?使用最近邻的这个模型的准确率为 89 %,而分类模型的准确率只有 59 %,所以这绝对是一个很好的开始。接近 90 % 的准确率是非常可以接受的。让我们再进一步来分析这些结果的假正和假负的情况,以便深入了解来自 WEKA 的这些结果在实际业务中的适用。

此模型的结果显示我们有 76 个假正(2.5 %),有 261 个假负(8.7 %)。请记住在本例中一个假正意味着我们的模型预测该客户会购买延保而实际上却未购买,而一个假负则意味着我们的模型预测客户不会购买延保而实际却购买了。让我们估测经销商的宣传单的派发成本是每个传单 $3,延保为经销商带来了 $400 的利润。这个模型对经销商的成本/收益的预测应为 $400 - (2.5% * $3) - (8.7% * 400) = $365。所以,从此模型看来,这个经销商相当有利可图。与之相比,使用分类模型预测的成本/收益只有 $400 - (17.2% * $3) - (23.7% * $400) = $304,由此可以看出使用正确的模型可以为此经销商提供 20 % 潜在收入的提高。

您可以自己练习着在这个模型中尝试不同数量的最近邻(您可以右键单击下一个 “IBk -K 1....”,就会看到一列参数)。可以任意更改 "KNN"(K-最近邻)。在本例中您将会看到随着加入更多的邻,模型的准确率实际上却降低了。

此模型的一些不尽人意之处:当我们谈论像亚马逊这样的数据集时,最近邻的强大威力是显而易见的。对于有 2000 万用户的亚马逊,此算法非常准确,因为在亚马逊的数据库中与您有着类似购买习惯的潜在客户很多。您的最近邻会非常相似。因而,所创建的模型会十分准确和高效。相反,如果能比较的数据点相对很少的话,这个模型很快就会损坏,不再准确。在在线电子商务店铺的初期,比如只有 50 个顾客,那么产品推荐特性很可能一点都不准确,因为最近邻实际上与您本身相差甚远。

上一页  2 3 4 5 6 7 8 9 10  下一页

Tags:WEKA 进行 数据挖掘

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接