用 Hadoop 进行分布式数据处理,第 2 部分: 进阶
2010-07-06 00:00:00 来源:WEB开发网核心提示:Hadoop 分布式计算架构的真正实力在于其分布性,换句话说,用 Hadoop 进行分布式数据处理,第 2 部分: 进阶,向工作并行分布多个节点的能力使 Hadoop 能够应用于大型基础设施以及大量数据的处理,本文首先对一个分布式 Hadoop 架构进行分解,设置如图 2 所示,现在,然后探讨分布式配置和使用,分布式
Hadoop 分布式计算架构的真正实力在于其分布性。换句话说,向工作并行分布多个节点的能力使 Hadoop 能够应用于大型基础设施以及大量数据的处理。本文首先对一个分布式 Hadoop 架构进行分解,然后探讨分布式配置和使用。
分布式 Hadoop 架构
根据 用 Hadoop 进行分布式数据处理,第 1 部分:入门,所有 Hadoop 守护进程都在同一个主机上运行。尽管不运用 Hadoop 的并行性,这个伪分布式配置提供一种简单的方式来以最少的设置测试 Hadoop 的功能。现在,让我们使用机器集群探讨一下 Hadoop 的并行性。
根据第 1 部分,Hadoop 配置定义了让所有 Hadoop 守护进程在一个节点上运行。因此,让我们首先看一下如何自然分布 Hadoop 来执行并行操作。在一个分布式 Hadoop 设置中,您有一个主节点和一些从节点(见图 1)。
图 1. Hadoop 主从节点分解
如图 1 所示,主节点包括名称节点、从属名称节点和 jobtracker 守护进程(即所谓的主守护进程)。此外,这是您为本演示管理集群所用的节点(使用 Hadoop 实用程序和浏览器)。从节点包括 tasktracker 和数据节点(从属守护进程)。两种设置的不同之处在于,主节点包括提供 Hadoop 集群管理和协调的守护进程,而从节点包括实现 Hadoop 文件系统(HDFS)存储功能和 MapReduce 功能(数据处理功能)的守护进程。
对于该演示,在一个 LAN 上创建一个主节点和两个从节点。设置如图 2 所示。现在,我们来探讨用于多节点分布的 Hadoop 的安装和配置。
更多精彩
赞助商链接