WEB开发网
开发学院软件开发C++ C++数据结构学习:二叉树(2) 阅读

C++数据结构学习:二叉树(2)

 2008-03-08 21:36:53 来源:WEB开发网   
核心提示:线索化二叉树 这是数据结构课程里第一个碰到的难点,不知道你是不是这样看,C++数据结构学习:二叉树(2),反正我当初是费了不少脑细胞——当然,恼人的矩阵压缩和相关的加法乘法运算不在考虑之列,真不知道为什么她自己那本《数据结构(C语言版)》这里写的那么难懂,我是死活没看明白,
  线索化二叉树

  这是数据结构课程里第一个碰到的难点,不知道你是不是这样看,反正我当初是费了不少脑细胞——当然,恼人的矩阵压缩和相关的加法乘法运算不在考虑之列。 我费了不少脑细胞是因为思考:他们干什么呢?很欣喜的看到在这本黄皮书上,这章被打了*号,虽然我不确定作者是不是跟我一个想法——线索化二叉树在现在的PC上是毫无用处的!——不知我做了这个结论是不是会被人骂死,^_^。

  为了证实这个结论,我们来看看线索化二叉树提出的缘由:第一,我们想用比较少的时间,寻找二叉树某一个遍历线性序列的前驱或者后继。当然,这样的操作很频繁的时候,做这方面的改善才是有意义的。第二,二叉树的叶子节点还有两个指针域没有用,可以节省内存。说真的,提出线索化二叉树这样的构思真的很精巧,完全做到了“废物利用”——这个人真应该投身环保事业。但在计算机这个死板的东西身上,人们的精巧构思往往都是不能实现的——为了速度,计算机的各个部件都是整洁划一的,而构思的精巧往往都是建立在组成的复杂上的。

  我们来看看线索化二叉树究竟能不能达到上面的两个目标。

  求遍历后的线性序列的前驱和后继。前序线索化能依次找到后继,但是前驱需要求双亲;中序线索化前驱和后继都不需要求双亲,但是都不很直接;后序线索化能依次找到前驱,但是后继需要求双亲。可以看出,线索化成中序是最佳的选择,基本上算是达到了要求。

  节省内存。添加了两个标志位,问题是这两个位怎么储存?即使是在支持位存储的CPU上,也是不能拿位存储器来存的,第一是因为结构体成员的地址是在一起的,第二是位存储器的数目是有限的。因此,最少需要1个字节来储存这两个标志位。而为了速度和移植,一般来说,内存是要对齐的,实际上根本就没节省内存!然而,当这个空间用来储存双亲指针时,带来的方便绝对不是线索化所能比拟的,前面已经给出了无栈的非递归遍历。并且,在线索化二叉树上插入删除操作附加的代价太大。

  综上,线索化最好是中序线索化(前序后序线索化后还得用栈,何必要线索化呢),附加的标志域空间至少1个字节,在32位的CPU会要求对齐到4字节,还不如存储一个双亲指针,同样能达到中序线索化的目的,并且能带来其他的好处。所以,线索化二叉树在现在的PC上是毫无用处的!
更多文章 更多内容请看C/C++技术专题 数据结构 数据结构教程专题,或   由于对其他体系不太了解,以下观点姑妄听之。在内存空间非常充裕的现在,一个节点省2~3个字节实在是没什么意思(实际上由于对齐还省不出来);而在内存非常宝贵的地方(比如单片机),会尽量避免使用树结构——利用其他的方法。所以,现在看来,线索化二叉树真的是毫无用处了。

  二叉搜索树
  这恐怕是二叉树最重要的一个应用了。它的构想实际是个很自然的事情——查找值比当前节点小转左,大转右,等则查到,到头了就是没找着。越自然的东西越好理解,也就越不需要我废话。在给出BST的实现之前,我们要在二叉树的类中添加一个打印树状结构的成员函数,这样,就能清楚的看出插入和删除过程。

  public:
  
  voidPRint()

  {

  queue*>a;queueflag;ofstreamoutfile("out.txt");

  BTNode*p=root;BTNodezero;boolv=true;

  inti=1,level=0,h=height();

  while(i<2<
  {

  if(i==1<
  {


  cout<
  if(v)cout
  elsecout<<'';
  
  }

  else
  
  {
  
  cout<   
  if(v)cout   
  elsecout<<"";
  
  }
  
  if(p->left){a.push(p->left);flag.push(true);}
  
  else{a.push(&zero);flag.push(false);}
  
  if(p->right){a.push(p->right);flag.push(true);}
  
  else{a.push(&zero);flag.push(false);}
  
  p=a.front();a.pop();v=flag.front();flag.pop();i++;
  
  }
  
  cout<   
  }
  更多文章 更多内容请看C/C++技术专题 数据结构 数据结构教程专题,或  
  打印树状结构的核心是按层次遍历二叉树,但是,二叉树有许多节点缺左或右子树,连带的越到下面空隙越大。 为了按照树的结构打印,必须把二叉树补成完全二叉树,这样下面的节点就知道放在什么位置了——a.push(&zero);但是这样的节点不能让它打印出来,所以对应每个节点,有一个是否打印的标志,按理说pair结构很合适,为了简单我用了并列的两个队列,一个放节点指针——a,一个放打印标志——flag。这样一来,循环结束的标志就不能是队列空——永远都不可能空,碰到NULL就补一个节点——而是变成了到了满二叉树的最后一个节点2^(height+1)-1。——黄皮书对于树高的定义是,空树为的高度为-1。
  
  对于输出格式,注重的是到了第1、2、4、8号节点要换行,并且在同一行中,第一个节点的域宽是后序节点的一半。上面的函数在树的层次少于等于5(height<=4)的时候能正常显示,再多的话就必须输出到文件中去ofstreamoutfile("out.txt");——假如层次再多的话,打印出来也没什么意义了。
  
  二叉搜索树的实现
  实际上就是在二叉树的基础上增加了插入、删除、查找。
  
  #include"BaseTree.h"
  
  template
  
  classBSTree:publicBTree
  
  {
  
  public:
  
  BTNode*&find(constT&data)
  
  {
  
  BTNode**p=&root;current=NULL;
  
  while(*p)
  
  {
  
  if((*p)->data==data)break;
  
  if((*p)->dataright);}
  
  else{current=*p;p=&((*p)->left);}
  
  }
  
  return*p;
  
  }
  
  boolinsert(constT&data)
  
  {
   更多文章 更多内容请看C/C++技术专题 数据结构 数据结构教程专题,或   BTNode*&p=find(data);if(p)returnfalse;
  
  p=newBTNode(data,NULL,NULL,current);returntrue;
  
  }
  
  boolremove(constT&data)
  
  {
  
  returnremove(find(data));
  
  }
  
  private:
  

  boolremove(BTNode*&p)
  
  {
  
  if(!p)returnfalse;BTNode*t=p;
  
  if(!p->left!p->right)
  
  {
  
  if(!p->left)p=p->right;elsep=p->left;
  
  if(p)p->parent=current;
  
  deletet;returntrue;
  
  }
  
  t=p->right;while(t->left)t=t->left;p->data=t->data;current=t->parent;
  
  returnremove(current->left==t?current->left:current->right);
  
  }
  
  };
  
  以上代码有点费解,有必要说明一下——非线性链式结构操作的实现都是很让人费神。insert和remove都是以find为基础的,因此必须让find能最大限度的被这两个操作利用。
   更多文章 更多内容请看C/C++技术专题 数据结构 数据结构教程专题,或   对于insert,需要修改查找失败时的指针内容,显然这是个内部指针(在双亲节点的内部,而不是象root和current那样在节点外面指向节点),这就要求find返回一个内部指针的引用。但是C++的引用绑定到一个对象之后,就不能再改变了,因此在find内部的实现是一个二重指针。insert操作还需要修改插入的新节点的parent指针域,因此在find中要产生一个能被insert访问的指向find返回值所在节点的指针,这里用的是current。实际上find返回的指针引用不是current->left就是current->right。这样一来,insert的实现就非常简单了。
  
  对于remove,需要修改查找成功时的指针内容,同样是个内部指针。在find的基础上,很轻易就能得到这个内部指针的引用(BTNode*&p=find(data)。
  
  在p->left和p->right中至少有一个为NULL的情况下,假如p->left==NULL,那么就重连右子树p=p->right,反之,重连左子树p=p->left。注重,左右子树全空的情况也包含在这两个操作中了——在p->left==NULL的时候重连右子树,而这时p->right也是NULL——因此不必列出来。假如重连后p不为空,需要修改p->parent=current。
  
  若p->left和p->right都不为空,可以转化为有一个为空。例如一个中序有序序列[1,2,3,4,5],假设3既有左子树又有右子树,那么它的前驱2一定缺右子树,后继4一定缺少左子树。【注1】这样一来删除节点3就等效成从[1,2,3(4),4,5]删除节点4。这样就可以利用上面的在p->left和p->right中至少有一个为NULL的情况下的方法了。还是由于C++的引用不能改变绑定对象,这里是用利用递归来解决的,还好最多只递归一次。假如用二重指针又是满天星星了,这就是明明是尾递归却没有消去的原因。
  
  【注1】这是因为,假如3既有左子树又有右子树,那么2一定在3的左子树上,4一定在3的右子树上;假如2有右子树,那么在2和3之间还应该有一个节点;假如4有左子树,那么3和4之间也应该还有一个节点。
  
  【闲话】上面关于remove操作p->left和p->right都不为空的处理方法的讲解,源于严蔚敏老师的课件,看完后我豁然开朗,真不知道为什么她自己那本《数据结构(C语言版)》这里写的那么难懂,我是死活没看明白。
更多文章 更多内容请看C/C++技术专题 数据结构 数据结构教程专题,或

Tags:数据结构 学习

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接