高质量C++/C编程指南 -- 第9章 类的构造函数、析构函数与赋值函数
2008-03-08 21:55:17 来源:WEB开发网 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備浇顕栭崹搴ㄥ礃閿濆棗鐦遍梻鍌欒兌椤㈠﹤鈻嶉弴銏犵闁搞儺鍓欓悘鎶芥煛閸愩劎澧曠紒鈧崘鈹夸簻闊洤娴烽ˇ锕€霉濠婂牏鐣洪柡灞诲妼閳规垿宕卞▎蹇撴瘓缂傚倷闄嶉崝搴e垝椤栫偛桅闁告洦鍨扮粻鎶芥倵閿濆簼绨藉ù鐘荤畺濮婃椽妫冨☉娆愭倷闁诲孩鐭崡鎶芥偘椤曗偓瀹曞爼顢楁径瀣珫婵犳鍣徊鍓р偓绗涘洤绠查柛銉墮閽冪喖鏌i弬鎸庢喐闁荤喎缍婇弻娑⑩€﹂幋婵囩亪濡炪値鍓欓悧鍡涒€旈崘顔嘉ч幖绮光偓鑼嚬缂傚倷绶¢崰妤呭箰閹间焦鍋╅柣鎴f绾偓闂佺粯鍔曠粔闈浳涢崘顔兼槬闁逞屽墯閵囧嫰骞掗幋婵愪紑閻庤鎸风粈渚€鍩為幋锔藉亹闁圭粯甯╂导鈧紓浣瑰劤瑜扮偟鍒掑▎鎾宠摕婵炴垶鐭▽顏堟煙鐟欏嫬濮囨い銉︾箞濮婃椽鏌呴悙鑼跺濠⒀傚嵆閺岀喖鎼归锝呯3闂佹寧绻勯崑娑㈠煘閹寸姭鍋撻敐搴樺亾椤撴稒娅婇柡灞界У濞碱亪骞忕仦钘夊腐闂備焦鐪归崐鏇㈠箠閹邦喗顫曢柟鎯х摠婵挳鏌涢幘鏉戠祷闁告挸宕—鍐Χ閸℃浠搁梺鑽ゅ暱閺呮盯鎮鹃悜钘壩ㄧ憸澶愬磻閹剧粯鏅查幖绮瑰墲閻忓秹姊虹紒妯诲鞍婵炲弶锕㈡俊鐢稿礋椤栨氨鐤€闂傚倸鐗婄粙鎰姳閼测晝纾藉ù锝堟閻撴劖鎱ㄥΟ绋垮婵″弶鍔欓獮妯兼嫚閼碱剦妲伴梻浣稿暱閹碱偊宕愭繝姣稿洭寮舵惔鎾存杸濡炪倖姊婚妴瀣啅閵夛负浜滄い鎾跺仜濡插鏌i敐鍥у幋妤犵偞甯¢獮瀣籍閳ь剟鎮楁繝姘拺閻熸瑥瀚崕妤呮煕濡 鍋撻悢鎻掑緧婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繑銇勯幘鍗炵仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煃闁垮鐏﹂柕鍥у楠炴帡宕卞鎯ь棜缂傚倸鍊风粈渚€藝闁秴鏋佸┑鐘虫皑瀹撲線鏌涢埄鍐姇闁稿﹦鍏橀弻娑樷攽閸℃浼€濡炪倖姊归崝鏇㈠煘閹达附鍊婚柛銉㈡櫇鏍¢梻浣告啞閹稿鎮烽敂鐣屸攳濠电姴娲﹂崵鍐煃閸濆嫬鏆熼柨娑欑矒濮婇缚銇愰幒鎴滃枈闂佸憡鐟ユ鎼佸煝閹炬枼鍫柛顐ゅ枔閸樻悂鏌h箛鏇炰户缁绢厼鐖煎畷鎴﹀箻鐠囪尙鐤€婵炶揪绲介幉锟犲磹椤栫偞鈷戠痪顓炴噹娴滃綊鎮跺☉鏍у姦闁糕斁鍋撳銈嗗笒閸燁偊鎯冨ú顏呯厸濞达絽婀辨晶顏堟煃鐟欏嫬鐏撮柟顔界懇瀵爼骞嬮悩杈敇闂傚倷绀佸﹢杈ㄧ仚闂佺濮ょ划搴ㄥ礆閹烘绫嶉柛顐ゅ枎娴犺櫣绱撴担鍓插創妞ゆ洘濞婇弫鍐磼濞戞艾骞堥梻浣告惈濞层垽宕濆畝鍕€堕柣妯肩帛閻撴洟鏌熼懜顒€濡煎ù婊勫劤閳规垿鏁嶉崟顐℃澀闂佺ǹ锕ラ悧鐘茬暦濠靛鏅濋柍褜鍓熼垾锕傚锤濡も偓閻掑灚銇勯幒宥堝厡缂佺姴澧介埀顒€鍘滈崑鎾斥攽閻樿京绐旈柛瀣殔閳规垿顢欑涵鐑界反濠电偛鎷戠徊鍨i幇鏉跨闁瑰啿纾崰鎾诲箯閻樼粯鍤戦柤绋跨仛濮f劙姊婚崒姘偓鐑芥嚄閼哥數浠氭繝鐢靛仜椤曨參宕楀Ο渚殨妞ゆ劑鍊栫€氭氨鈧懓澹婇崰鏍р枔閵婏妇绡€闁汇垽娼ф牎缂佺偓婢樼粔鐟邦嚕閺屻儱绠甸柟鐑樼箘閸炵敻鏌i悩鐑橆仩閻忓繈鍔岄蹇涘Ψ瑜夐崑鎾舵喆閸曨剙纰嶅┑鈽嗗亝缁诲倿锝炶箛娑欐優闁革富鍘鹃敍婊冣攽閳藉棗鐏犻柟纰卞亰閿濈偛顓奸崶鈺冿紳婵炶揪缍侀ˉ鎾诲礉瀹ュ鐓欑紒瀣仢閺嗛亶鏌i敐鍥у幋妤犵偛顑夐弫鍐焵椤掑倻涓嶅┑鐘崇閸嬶綁鏌涢妷鎴濆暟妤犲洭鎮楃憴鍕碍缂佸鎸抽垾鏃堝礃椤斿槈褔鏌涢埄鍏狀亪妫勫鍥╃=濞达絽澹婇崕鎰版煕閵娿儱顣崇紒顔碱儏椤撳吋寰勭€n亖鍋撻柨瀣ㄤ簻闁瑰搫绉堕ˇ锔锯偓娈垮枛閻忔繈鍩為幋锕€鐓¢柛鈩冾殘娴狀垶姊洪崨濠庣劶闁告洦鍙庡ú鍛婁繆閵堝繒鍒伴柛鐕佸灦瀹曟劙宕归锝呭伎濠碘槅鍨抽崢褎绂嶆ィ鍐╁€垫慨妯煎亾鐎氾拷

核心提示:构造函数、析构函数与赋值函数是每个类最基本的函数,它们太普通以致让人轻易麻痹大意,高质量C++/C编程指南 -- 第9章 类的构造函数、析构函数与赋值函数,其实这些貌似简单的函数就象没有顶盖的下水道那样危险, 每个类只有一个析构函数和一个赋值函数,9.8 如何在派生类中实现类的基本函数基类的构造函数、析构函数、赋值函数
构造函数、析构函数与赋值函数是每个类最基本的函数。它们太普通以致让人轻易麻痹大意,其实这些貌似简单的函数就象没有顶盖的下水道那样危险。 每个类只有一个析构函数和一个赋值函数,但可以有多个构造函数(包含一个拷贝构造函数,其它的称为普通构造函数)。对于任意一个类A,假如不想编写上述函数,C++编译器将自动为A产生四个缺省的函数,如 A(void); // 缺省的无参数构造函数 A(const A &a); // 缺省的拷贝构造函数 ~A(void); // 缺省的析构函数 A & Operate =(const A &a); // 缺省的赋值函数 这不禁让人迷惑,既然能自动生成函数,为什么还要程序员编写? 原因如下: (1)假如使用“缺省的无参数构造函数”和“缺省的析构函数”,等于放弃了自主“初始化”和“清除”的机会,C++发明人Stroustrup的好心好意白费了。 (2)“缺省的拷贝构造函数”和“缺省的赋值函数”均采用“位拷贝”而非“值拷贝”的方式来实现,倘若类中含有指针变量,这两个函数注定将出错。 对于那些没有吃够苦头的C++程序员,假如他说编写构造函数、析构函数与赋值函数很轻易,可以不用动脑筋,表明他的熟悉还比较肤浅,水平有待于提高。 本章以类String的设计与实现为例,深入阐述被很多教科书忽视了的道理。String的结构如下: class String { public: String(const char *str = NULL); // 普通构造函数 String(const String &other); // 拷贝构造函数 ~ String(void); // 析构函数 String & operate =(const String &other); // 赋值函数 PRivate: char *m_data; // 用于保存字符串 }; 9.1 构造函数与析构函数的起源
作为比C更先进的语言,C++提供了更好的机制来增强程序的安全性。C++编译器具有严格的类型安全检查功能,它几乎能找出程序中所有的语法问题,这的确帮了程序员的大忙。但是程序通过了编译检查并不表示错误已经不存在了,在“错误”的大家庭里,“语法错误”的地位只能算是小弟弟。级别高的错误通常隐藏得很深,就象狡猾的罪犯,想逮住他可不轻易。 根据经验,不少难以察觉的程序错误是由于变量没有被正确初始化或清除造成的,而初始化和清除工作很轻易被人遗忘。Stroustrup在设计C++语言时充分考虑了这个问题并很好地予以解决:把对象的初始化工作放在构造函数中,把清除工作放在析构函数中。当对象被创建时,构造函数被自动执行。当对象消亡时,析构函数被自动执行。这下就不用担心忘了对象的初始化和清除工作。 构造函数与析构函数的名字不能随便起,必须让编译器认得出才可以被自动执行。Stroustrup的命名方法既简单又合理:让构造函数、析构函数与类同名,由于析构函数的目的与构造函数的相反,就加前缀‘~’以示区别。 除了名字外,构造函数与析构函数的另一个非凡之处是没有返回值类型,这与返回值类型为void的函数不同。构造函数与析构函数的使命非常明确,就象出生与死亡,光溜溜地来光溜溜地去。假如它们有返回值类型,那么编译器将不知所措。为了防止节外生枝,干脆规定没有返回值类型。(以上典故参考了文献[Eekel, p55-p56]) 9.2 构造函数的初始化表
构造函数有个非凡的初始化方式叫“初始化表达式表”(简称初始化表)。初始化表位于函数参数表之后,却在函数体 {} 之前。这说明该表里的初始化工作发生在函数体内的任何代码被执行之前。 构造函数初始化表的使用规则: u 假如类存在继续关系,派生类必须在其初始化表里调用基类的构造函数。 例如 class A {… A(int x); // A的构造函数 }; class B : public A {… B(int x, int y);// B的构造函数 }; B::B(int x, int y) : A(x) // 在初始化表里调用A的构造函数 { … } u 类的const常量只能在初始化表里被初始化,因为它不能在函数体内用赋值的方式来初始化(参见5.4节)。 u 类的数据成员的初始化可以采用初始化表或函数体内赋值两种方式,这两种方式的效率不完全相同。 非内部数据类型的成员对象应当采用第一种方式初始化,以获取更高的效率。例如 class A {… A(void); // 无参数构造函数 A(const A &other); // 拷贝构造函数 A & operate =( const A &other); // 赋值函数 }; class B { public: B(const A &a); // B的构造函数 private: A m_a; // 成员对象 }; 示例9-2(a)中,类B的构造函数在其初始化表里调用了类A的拷贝构造函数,从而将成员对象m_a初始化。 示例9-2 (b)中,类B的构造函数在函数体内用赋值的方式将成员对象m_a初始化。我们看到的只是一条赋值语句,但实际上B的构造函数干了两件事:先暗地里创建m_a对象(调用了A的无参数构造函数),再调用类A的赋值函数,将参数a赋给m_a。 B::B(const A &a) : m_a(a) { … }
B::B(const A &a) { m_a = a; …
}
示例9-2(a) 成员对象在初始化表中被初始化 示例9-2(b) 成员对象在函数体内被初始化 对于内部数据类型的数据成员而言,两种初始化方式的效率几乎没有区别,但后者的程序版式似乎更清楚些。若类F的声明如下: class F { public: F(int x, int y); // 构造函数 private: int m_x, m_y; int m_i, m_j; } 示例9-2(c)中F的构造函数采用了第一种初始化方式,示例9-2(d)中F的构造函数采用了第二种初始化方式。 F::F(int x, int y) : m_x(x), m_y(y) { m_i = 0; m_j = 0; }
F::F(int x, int y) { m_x = x; m_y = y; m_i = 0; m_j = 0; }
示例9-2(c) 数据成员在初始化表中被初始化 示例9-2(d) 数据成员在函数体内被初始化 9.3 构造和析构的次序
构造从类层次的最根处开始,在每一层中,首先调用基类的构造函数,然后调用成员对象的构造函数。析构则严格按照与构造相反的次序执行,该次序是唯一的,否则编译器将无法自动执行析构过程。 一个有趣的现象是,成员对象初始化的次序完全不受它们在初始化表中次序的影响,只由成员对象在类中声明的次序决定。这是因为类的声明是唯一的,而类的构造函数可以有多个,因此会有多个不同次序的初始化表。假如成员对象按照初始化表的次序进行构造,这将导致析构函数无法得到唯一的逆序。[Eckel, p260-261] 9.4 示例:类String的构造函数与析构函数
// String的普通构造函数 String::String(const char *str) { if(str==NULL) { m_data = new char[1]; *m_data = ‘\0’; } else { int length = strlen(str); m_data = new char[length+1]; strcpy(m_data, str); } } // String的析构函数 String::~String(void) { delete [] m_data; // 由于m_data是内部数据类型,也可以写成 delete m_data; } 9.5 不要轻视拷贝构造函数与赋值函数
由于并非所有的对象都会使用拷贝构造函数和赋值函数,程序员可能对这两个函数有些轻视。请先记住以下的警告,在阅读正文时就会多心: u 本章开头讲过,假如不主动编写拷贝构造函数和赋值函数,编译器将以“位拷贝”的方式自动生成缺省的函数。倘若类中含有指针变量,那么这两个缺省的函数就隐含了错误。以类String的两个对象a,b为例,假设a.m_data的内容为“hello”,b.m_data的内容为“world”。 现将a赋给b,缺省赋值函数的“位拷贝”意味着执行b.m_data = a.m_data。这将造成三个错误:一是b.m_data原有的内存没被释放,造成内存泄露;二是b.m_data和a.m_data指向同一块内存,a或b任何一方变动都会影响另一方;三是在对象被析构时,m_data被释放了两次。 u 拷贝构造函数和赋值函数非常轻易混淆,常导致错写、错用。拷贝构造函数是在对象被创建时调用的,而赋值函数只能被已经存在了的对象调用。以下程序中,第三个语句和第四个语句很相似,你分得清楚哪个调用了拷贝构造函数,哪个调用了赋值函数吗? String a(“hello”); String b(“world”); String c = a; // 调用了拷贝构造函数,最好写成 c(a); c = b; // 调用了赋值函数 本例中第三个语句的风格较差,宜改写成String c(a) 以区别于第四个语句。 9.6 示例:类String的拷贝构造函数与赋值函数
// 拷贝构造函数 String::String(const String &other) { // 答应操作other的私有成员m_data int length = strlen(other.m_data); m_data = new char[length+1]; strcpy(m_data, other.m_data); } // 赋值函数 String & String::operate =(const String &other) { // (1) 检查自赋值 if(this == &other) return *this; // (2) 释放原有的内存资源 delete [] m_data; // (3)分配新的内存资源,并复制内容 int length = strlen(other.m_data); m_data = new char[length+1]; strcpy(m_data, other.m_data); // (4)返回本对象的引用 return *this; } 类String拷贝构造函数与普通构造函数(参见9.4节)的区别是:在函数入口处无需与NULL进行比较,这是因为“引用”不可能是NULL,而“指针”可以为NULL。 类String的赋值函数比构造函数复杂得多,分四步实现: (1)第一步,检查自赋值。你可能会认为多此一举,难道有人会愚蠢到写出 a = a 这样的自赋值语句!的确不会。但是间接的自赋值仍有可能出现,例如
// 内容自赋值 b = a; … c = b; … a = c;
// 地址自赋值 b = &a; … a = *b;
也许有人会说:“即使出现自赋值,我也可以不理睬,大不了化点时间让对象复制自己而已,反正不会出错!” 他真的说错了。看看第二步的delete,自杀后还能复制自己吗?所以,假如发现自赋值,应该马上终止函数。注重不要将检查自赋值的if语句 if(this == &other) 错写成为 if( *this == other) (2)第二步,用delete释放原有的内存资源。假如现在不释放,以后就没机会了,将造成内存泄露。 (3)第三步,分配新的内存资源,并复制字符串。注重函数strlen返回的是有效字符串长度,不包含结束符‘\0’。函数strcpy则连‘\0’一起复制。 (4)第四步,返回本对象的引用,目的是为了实现象 a = b = c 这样的链式表达。注重不要将 return *this 错写成 return this 。那么能否写成return other 呢?效果不是一样吗? 不可以!因为我们不知道参数other的生命期。有可能other是个临时对象,在赋值结束后它马上消失,那么return other返回的将是垃圾。 9.7 偷懒的办法处理拷贝构造函数与赋值函数
假如我们实在不想编写拷贝构造函数和赋值函数,又不答应别人使用编译器生成的缺省函数,怎么办? 偷懒的办法是:只需将拷贝构造函数和赋值函数声明为私有函数,不用编写代码。 例如: class A { … private: A(const A &a); // 私有的拷贝构造函数 A & operate =(const A &a); // 私有的赋值函数 }; 假如有人试图编写如下程序: A b(a); // 调用了私有的拷贝构造函数 b = a; // 调用了私有的赋值函数 编译器将指出错误,因为外界不可以操作A的私有函数。 9.8 如何在派生类中实现类的基本函数
基类的构造函数、析构函数、赋值函数都不能被派生类继续。假如类之间存在继续关系,在编写上述基本函数时应注重以下事项: u 派生类的构造函数应在其初始化表里调用基类的构造函数。 u 基类与派生类的析构函数应该为虚(即加virtual<span style='font-family:宋体;mso-ascii-font-family: "Times New Roman";mso-hansi-font-family:"Times New Ro
[]
赞助商链接