WEB开发网      濠电姷鏁告慨鐑藉极閸涘﹦绠鹃柍褜鍓氱换娑欐媴閸愬弶鎼愮痪鍓ф嚀閳规垿鎮╃€圭姴顥濋梺姹囧€楅崑鎾诲Φ閸曨垰绠涢柛顐f礃椤庡秹姊虹粙娆惧剳闁哥姵鍔欐俊鐢稿礋椤栨艾鍞ㄩ梺闈浤涙担鎻掍壕闁圭儤顨嗛埛鎺楁煕閺囥劌浜滄い蹇e弮閺屸€崇暆鐎n剛鏆犻柧浼欑到閵嗘帒顫濋悡搴d画缂佹鍨垮缁樻媴缁涘娈┑顔斤公缁犳捇銆佸鎰佹▌濠电姭鍋撳ù锝囩《閺€浠嬫煟濡鍤嬬€规悶鍎辫灃闁绘ê寮堕崯鐐电磼閸屾氨效鐎规洘绮忛ˇ瀵哥棯閹佸仮鐎殿喖鐖煎畷鐓庘槈濡警鐎崇紓鍌欑劍椤ㄥ棗鐣濋幖浣歌摕闁绘棃顥撻弳瀣煟濡も偓閻楀棗鈻撳Δ鍛拺閻犲洠鈧櫕鐏€闂佸搫鎳愭慨鎾偩閻ゎ垬浜归柟鐑樼箖閺呮繈姊洪棃娑氬婵☆偅鐟╅、娆掔疀閺冨倻鐦堥梺姹囧灲濞佳勭閿曞倹鐓曢柕濞垮劤閸╋絾顨ラ悙鏉戝妤犵偞锕㈤、娆撴嚃閳哄骞㈤梻鍌欐祰椤鐣峰Ο鑲╃煋妞ゆ棁锟ユ禍褰掓煙閻戞ɑ灏ù婊冪秺濮婅櫣绱掑Ο铏逛桓闂佹寧娲嶉弲娑滅亱闂佸憡娲﹂崹閬嶅煕閹达附鐓欓柤娴嬫櫅娴犳粌鈹戦垾鐐藉仮闁诡喗顨呴埥澶愬箳閹惧褰囩紓鍌欑贰閸犳牠顢栭崨鎼晣闁稿繒鍘х欢鐐翠繆椤栨粎甯涙繛鍛喘濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍨嚕缂佹ḿ绡€闁搞儯鍔嶅▍鍥⒑缁嬫寧婀扮紒瀣崌瀹曘垽鎮介崨濠勫幗闁瑰吋鐣崹濠氬煀閺囥垺鐓ユ慨妯垮煐閻撶喖鐓崶銉ュ姢缂佸宕电槐鎺旂磼濡偐鐣虹紓浣虹帛缁诲牆鐣峰鈧俊姝岊槺缂佽鲸绻堝缁樻媴缁涘娈愰梺鎼炲妺閸楀啿鐣烽鐐茬骇闁瑰濮靛▓楣冩⒑缂佹ɑ鈷掗柍宄扮墦瀵偊宕掗悙瀵稿幈闂佹娊鏁崑鎾绘煛閸涱喚鎳呮俊鍙夊姇铻i悶娑掑墲閺傗偓闂備胶绮崝鏇炍熸繝鍥у惞闁绘柨鐨濋弨鑺ャ亜閺冨洦顥夐柛鏂诲€濋幗鍫曟倷閻戞ḿ鍘遍梺鍝勬储閸斿本鏅堕鐐寸厱婵炲棗绻掔粻濠氭煛鐏炵晫效鐎规洦鍋婂畷鐔碱敆閳ь剙鈻嶉敐鍥╃=濞达絾褰冩禍鐐節閵忥絾纭炬い鎴濇川缁粯銈i崘鈺冨幍闁诲孩绋掑玻璺ㄧ不濮椻偓閺屻劌鈽夊Ο澶癸絾銇勯妸锝呭姦闁诡喗鐟╅、鏃堝礋椤撴繄绀勯梻鍌欐祰椤曟牠宕伴弽顐ょ濠电姴鍊婚弳锕傛煙椤栫偛浜版俊鑼额嚙閳规垿鍩勯崘銊хシ濡炪値鍘鹃崗妯侯嚕鐠囨祴妲堥柕蹇曞閳哄懏鐓忓璺虹墕閸旀挳鏌涢弬娆炬Ш缂佽鲸鎸婚幏鍛矙鎼存挸浜鹃柛婵勫劤閻挾鎲搁悧鍫濈瑨闁哄绶氶弻鐔煎礈瑜忕敮娑㈡煛閸涱喗鍊愰柡灞诲姂閹倝宕掑☉姗嗕紦 ---闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏃堟暜閸嬫挾绮☉妯哄箻婵炲樊浜滈悡娑㈡煕濞戝崬骞樻い鏂挎濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟�
开发学院软件开发C++ Win32结构化异常处理(SEH)探秘(下) 阅读

Win32结构化异常处理(SEH)探秘(下)

 2010-10-15 09:07:35 来源:Web开发网 闂傚倸鍊搁崐鎼佸磹妞嬪孩顐芥慨姗嗗厳缂傛氨鎲稿鍫罕闂備礁婀遍搹搴ㄥ窗閺嶎偆涓嶆い鏍仦閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閹绘帞鈧參姊哄Ч鍥х仼闁诲繑鑹鹃悾鐑藉蓟閵夛妇鍘甸梺瑙勵問閸犳牠銆傛總鍛婄厱閹艰揪绱曟牎闂侀潧娲ょ€氫即鐛幒妤€绠f繝闈涘暙娴滈箖鏌i姀鈶跺湱澹曟繝姘厵闁绘劦鍓氶悘杈ㄤ繆閹绘帞澧涚紒缁樼洴瀹曞崬螖閸愬啠鍓濈换娑樼暆婵犱胶鏁栫紓浣介哺閹瑰洤鐣烽幒鎴僵闁瑰吀鐒﹂悗鎼佹⒒娴g儤鍤€闁搞倖鐗犻獮蹇涙晸閿燂拷濠电姷鏁告慨鐑藉极閸涘﹥鍙忔い鎾卞灩缁狀垶鏌涢幇闈涙灈鐎瑰憡绻冮妵鍕箻鐎靛摜鐣奸梺纭咁潐濞茬喎顫忕紒妯肩懝闁逞屽墮宀h儻顦查悡銈夋煏閸繃鍋繛宸簻鎯熼梺瀹犳〃閼冲爼宕濋敃鈧—鍐Χ閸℃鐟愰梺鐓庡暱閻栧ジ宕烘繝鍥у嵆闁靛骏绱曢崢顏堟⒑閹肩偛鍔楅柡鍛⊕缁傛帟顦寸紒杈ㄥ笚濞煎繘鍩℃担閿嬵潟闂備浇妗ㄩ悞锕傚箲閸ヮ剙鏋侀柟鍓х帛閺呮悂鏌ㄩ悤鍌涘闂傚倸鍊搁崐鎼佸磹妞嬪孩顐芥慨姗嗗厳缂傛氨鎲稿鍫罕闂備礁婀遍搹搴ㄥ窗閺嶎偆涓嶆い鏍仦閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹  闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳氨绱撻崒娆掑厡缂侇噮鍨堕妴鍐川閺夋垹鍘洪悗骞垮劚椤︻垶宕¢幎鑺ョ厪闊洦娲栨牎闂佽瀵掗崜鐔奉潖閾忓湱纾兼俊顖氭惈椤矂姊虹拠鑼婵ǜ鍔戦崺鈧い鎺嶇閸ゎ剟鏌涢幘璺烘瀻妞ゎ偄绻愮叅妞ゅ繐瀚悗顓烆渻閵堝棙绀€闁瑰啿閰e畷婊勫鐎涙ǚ鎷洪梻渚囧亞閸嬫盯鎳熼娑欐珷妞ゆ柨澧界壕鐓庮熆鐠虹尨鍔熺紒澶庢閳ь剚顔栭崰鏍€﹂柨瀣╃箚婵繂鐭堝Σ鐑芥⒑缁嬫鍎愰柟鐟版搐铻為柛鎰╁妷濡插牊绻涢崱妤冪婵炲牊锕㈠缁樻媴妞嬪簼瑕嗙紓鍌氱М閸嬫挻绻涚€涙ḿ鐭ら柛鎾跺枛瀹曟椽鍩€椤掍降浜滈柟鐑樺灥閳ь剙缍婂鎶筋敆閸曨剛鍘遍柣搴秵娴滅兘鐓鍌楀亾鐟欏嫭纾婚柛妤€鍟块锝夊磹閻曚焦鞋闂備礁鎼Λ瀵哥不閹捐钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷�
核心提示:展开在挖掘展开(Unwinding)的实现代码之前让我们先来搞清楚它的意思,我在前面已经讲过所有可能的异常处理程序是如何被组织在一个由线程信息块的第一个DWORD(FS:[0])所指向的链表中的,Win32结构化异常处理(SEH)探秘(下),由于针对某个特定异常的处理程序可能不在这个链表的开头,因此就需要从链表中依次移

展开

在挖掘展开(Unwinding)的实现代码之前让我们先来搞清楚它的意思。我在前面已经讲过所有可能的异常处理程序是如何被组织在一个由线程信息块的第一个DWORD(FS:[0])所指向的链表中的。由于针对某个特定异常的处理程序可能不在这个链表的开头,因此就需要从链表中依次移除实际处理异常的那个异常处理程序之前的所有异常处理程序。

正如你在Visual C++的__except_handler3函数中看到的那样,展开是由__global_unwind2这个运行时库(RTL)函数来完成的。这个函数只是对RtlUnwind这个未公开的API进行了非常简单的封装。(现在这个API已经被公开了,但给出的信息极其简单,详细信息可以参考最新的Platform SDK文档。)

__global_unwind2(void * pRegistFrame)
{

_RtlUnwind( pRegistFrame, &__ret_label, 0, 0 );
__ret_label:
}

虽然从技术上讲RtlUnwind是一个KERNEL32函数,但它只是转发到了NTDLL.DLL中的同名函数上。下面是我为此函数写的伪代码。

RtlUnwind 函数的伪代码:

 void _RtlUnwind( PEXCEPTION_REGISTRATION pRegistrationFrame,

 PVOID returnAddr, // 并未使用!(至少是在i386机器上)

 PEXCEPTION_RECORD pExcptRec,

 DWORD _eax_value)
 { 

 DWORD stackUserBase;

 DWORD stackUserTop;

 PEXCEPTION_RECORD pExcptRec;

 EXCEPTION_RECORD exceptRec;

 CONTEXT context;

 // 从FS:[4]和FS:[8]处获取堆栈的界限

 RtlpGetStackLimits( &stackUserBase, &stackUserTop );

 if ( 0 == pExcptRec ) // 正常情况

 {

 pExcptRec = &excptRec;

 pExcptRec->ExceptionFlags = 0;

 pExcptRec->ExceptionCode = STATUS_UNWIND;

 pExcptRec->ExceptionRecord = 0;

 pExcptRec->ExceptionAddress = [ebp+4]; // RtlpGetReturnAddress()—获取返回地址

 pExcptRec->ExceptionInformation[0] = 0;

 }

 if ( pRegistrationFrame )

 pExcptRec->ExceptionFlags |= EXCEPTION_UNWINDING;

 else       // 这两个标志合起来被定义为EXCEPTION_UNWIND_CONTEXT

 pExcptRec->ExceptionFlags|=(EXCEPTION_UNWINDING|EXCEPTION_EXIT_UNWIND);

 context.ContextFlags =( CONTEXT_i486 | CONTEXT_CONTROL |

 CONTEXT_INTEGER | CONTEXT_SEGMENTS);

 RtlpCaptureContext( &context );

 context.Esp += 0x10;

 context.Eax = _eax_value;

 PEXCEPTION_REGISTRATION pExcptRegHead;

 pExcptRegHead = RtlpGetRegistrationHead(); // 返回FS:[0]的值

 // 开始遍历EXCEPTION_REGISTRATION结构链表

 while ( -1 != pExcptRegHead )

 {

 EXCEPTION_RECORD excptRec2;

 if ( pExcptRegHead == pRegistrationFrame )

 {


 NtContinue( &context, 0 );

 }

 else

 {


 // 如果存在某个异常帧在堆栈上的位置比异常链表的头部还低


 // 说明一定出现了错误


 if ( pRegistrationFrame && (pRegistrationFrame <= pExcptRegHead) )


 {


 // 生成一个异常


 excptRec2.ExceptionRecord = pExcptRec;


 excptRec2.NumberParameters = 0;


 excptRec2.ExceptionCode = STATUS_INVALID_UNWIND_TARGET;


 excptRec2.ExceptionFlags = EXCEPTION_NONCONTINUABLE;


 RtlRaiseException( &exceptRec2 );


 }

 }

 PVOID pStack = pExcptRegHead + 8; // 8 = sizeof(EXCEPTION_REGISTRATION)

 // 确保pExcptRegHead在堆栈范围内,并且是4的倍数

 if ( (stackUserBase <= pExcptRegHead )


 && (stackUserTop >= pStack )


 && (0 == (pExcptRegHead & 3)) )

 {


 DWORD pNewRegistHead;


 DWORD retValue;


 retValue = RtlpExecutehandlerForUnwind(pExcptRec, pExcptRegHead, &context,


 &pNewRegistHead, pExceptRegHead->handler );


 if ( retValue != DISPOSITION_CONTINUE_SEARCH )


 {


 if ( retValue != DISPOSITION_COLLIDED_UNWIND )


 {



 excptRec2.ExceptionRecord = pExcptRec;



 excptRec2.NumberParameters = 0;



 excptRec2.ExceptionCode = STATUS_INVALID_DISPOSITION;



 excptRec2.ExceptionFlags = EXCEPTION_NONCONTINUABLE;



 RtlRaiseException( &excptRec2 );


 }


 else



 pExcptRegHead = pNewRegistHead;


 }


 PEXCEPTION_REGISTRATION pCurrExcptReg = pExcptRegHead;


 pExcptRegHead = pExcptRegHead->prev;


 RtlpUnlinkHandler( pCurrExcptReg );

 }

 else // 堆栈已经被破坏!生成一个异常

 {


 excptRec2.ExceptionRecord = pExcptRec;


 excptRec2.NumberParameters = 0;


 excptRec2.ExceptionCode = STATUS_BAD_STACK;


 excptRec2.ExceptionFlags = EXCEPTION_NONCONTINUABLE;


 RtlRaiseException( &excptRec2 );

 }

 }

 // 如果执行到这里,说明已经到了EXCEPTION_REGISTRATION

 // 结构链表的末尾,正常情况下不应该发生这种情况。

 //(因为正常情况下异常应该被处理,这样就不会到链表末尾)

 if ( -1 == pRegistrationFrame )

 NtContinue( &context, 0 );

 else

 NtRaiseException( pExcptRec, &context, 0 );
 }

 RtlUnwind函数的伪代码到这里就结束了,以下是它调用的几个函数的伪代码:

 PEXCEPTION_REGISTRATION RtlpGetRegistrationHead( void )
 {

 return FS:[0];
 }
 RtlpUnlinkHandler( PEXCEPTION_REGISTRATION pRegistrationFrame )
 {

FS:[0] = pRegistrationFrame->prev;
 }
 void RtlpCaptureContext( CONTEXT * pContext )
 {

 pContext->Eax = 0;

 pContext->Ecx = 0;

 pContext->Edx = 0;

 pContext->Ebx = 0;

 pContext->Esi = 0;

 pContext->Edi = 0;

 pContext->SegCs = CS;

 pContext->SegDs = DS;

 pContext->SegEs = ES;

 pContext->SegFs = FS;

 pContext->SegGs = GS;

 pContext->SegSs = SS;

 pContext->EFlags = flags; // 它对应的汇编代码为__asm{ PUSHFD / pop [xxxxxxxx] }

 pContext->Eip = 此函数的调用者的调用者的返回地址  // 读者看一下这个函数的

 pContext->Ebp = 此函数的调用者的调用者的EBP    // 汇编代码就会清楚这一点

 pContext->Esp = pContext->Ebp + 8;
 }

虽然 RtlUnwind 函数的规模看起来很大,但是如果你按一定方法把它分开,其实并不难理解。它首先从FS:[4]和FS:[8]处获取当前线程堆栈的界限。它们对于后面要进行的合法性检查非常重要,以确保所有将要被展开的异常帧都在堆栈范围内。

RtlUnwind 接着在堆栈上创建了一个空的EXCEPTION_RECORD结构并把STATUS_UNWIND赋给它的ExceptionCode域,同时把 EXCEPTION_UNWINDING标志赋给它的 ExceptionFlags 域。指向这个结构的指针作为其中一个参数被传递给每个异常回调函数。然后,这个函数调用RtlCaptureContext函数来创建一个空的CONTEXT结构,这个结构也变成了在展开阶段调用每个异常回调函数时传递给它们的一个参数。

RtlUnwind函数的其余部分遍历EXCEPTION_REGISTRATION结构链表。对于其中的每个帧,它都调用 RtlpExecuteHandlerForUnwind 函数,后面我会讲到这个函数。正是这个函数带 EXCEPTION_UNWINDING 标志调用了异常处理回调函数。每次回调之后,它调用RtlpUnlinkHandler 移除相应的异常帧。

RtlUnwind 函数的第一个参数是一个帧的地址,当它遍历到这个帧时就停止展开异常帧。上面所说的这些代码之间还有一些安全性检查代码,它们用来确保不出问题。如果出现任何问题,RtlUnwind 就引发一个异常,指示出了什么问题,并且这个异常带有EXCEPTION_NONCONTINUABLE 标志。当一个进程被设置了这个标志时,它就不允许再运行,必须终止。

1 2 3 4 5  下一页

Tags:Win 结构化 异常

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接