Java实现几种常见排序方法(下)
2009-11-06 20:56:38 来源:WEB开发网核心提示:插入排序的工作原理是通过构建有序序列,对于未排序数据,Java实现几种常见排序方法(下),在已排序序列中从后向前扫描,找到相应位置并插入,该空间用来存放合并后的序列</li> * <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li> * <li>比较两
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。其具体步骤参见代码及注释。
view plaincopy to clipboardPRint?
/**
* 插入排序<br/>
* <ul>
* <li>从第一个元素开始,该元素可以认为已经被排序</li>
* <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
* <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
* <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
* <li>将新元素插入到该位置中</li>
* <li>重复步骤2</li>
* </ul>
*
* @param numbers
*/
public static void insertSort(int[] numbers) {
int size = numbers.length, temp, j;
for(int i=1; i<size; i++) {
temp = numbers[i];
for(j = i; j > 0 && temp < numbers[j-1]; j--)
numbers[j] = numbers[j-1];
numbers[j] = temp;
}
}
/**
* 插入排序<br/>
* <ul>
* <li>从第一个元素开始,该元素可以认为已经被排序</li>
* <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
* <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
* <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
* <li>将新元素插入到该位置中</li>
* <li>重复步骤2</li>
* </ul>
*
* @param numbers
*/
public static void insertSort(int[] numbers) {
int size = numbers.length, temp, j;
for(int i=1; i<size; i++) {
temp = numbers[i];
for(j = i; j > 0 && temp < numbers[j-1]; j--)
numbers[j] = numbers[j-1];
numbers[j] = temp;
}
}
归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。参考代码如下:
view plaincopy to clipboardprint?
/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
* 算法参考:<a href="http://www.cnitblog.com/intrl/" mce_href="http://www.cnitblog.com/intrl/">java部落</a>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
* 算法参考:<a href="http://www.cnitblog.com/intrl/" mce_href="http://www.cnitblog.com/intrl/">Java部落</a>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
将之前介绍的所有排序算法整理成NumberSort类,代码
view plaincopy to clipboardprint?
/**
* BubbleSort.class
*/
package test.sort;
import java.util.Random;
/**
* Java实现的排序类
*
* @author cyq
*
*/
public class NumberSort {
/**
* 私有构造方法,禁止实例化
*/
private NumberSort() {
super();
}
/**
* 冒泡法排序<br/>
* <ul>
* <li>比较相邻的元素。如果第一个比第二个大,就交换他们两个。</li>
* <li>对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。</li>
* <li>针对所有的元素重复以上的步骤,除了最后一个。</li>
* <li>持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。</li>
* </ul>
*
* @param numbers
* 需要排序的整型数组
*/
public static void bubbleSort(int[] numbers) {
int temp; // 记录临时中间值
int size = numbers.length; // 数组大小
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (numbers[i] < numbers[j]) { // 交换两数的位置
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
}
}
}
/**
* 快速排序<br/>
* <ul>
* <li>从数列中挑出一个元素,称为“基准”</li>
* <li>重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,
* 该基准是它的最后位置。这个称为分割(partition)操作。</li>
* <li>递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。</li>
* </ul>
*
* @param numbers
* @param start
* @param end
*/
public static void quickSort(int[] numbers, int start, int end) {
if (start < end) {
int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)
int temp; // 记录临时中间值
int i = start, j = end;
do {
while ((numbers[i] < base) && (i < end))
i++;
while ((numbers[j] > base) && (j > start))
j--;
if (i <= j) {
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
i++;
j--;
}
} while (i <= j);
if (start < j)
quickSort(numbers, start, j);
if (end > i)
quickSort(numbers, i, end);
}
}
/**
* 选择排序<br/>
* <ul>
* <li>在未排序序列中找到最小元素,存放到排序序列的起始位置</li>
* <li>再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。</li>
* <li>以此类推,直到所有元素均排序完毕。</li>
* </ul>
*
* @param numbers
*/
public static void selectSort(int[] numbers) {
int size = numbers.length, temp;
for (int i = 0; i < size; i++) {
int k = i;
for (int j = size - 1; j > i; j--) {
if (numbers[j] < numbers[k])
k = j;
}
temp = numbers[i];
numbers[i] = numbers[k];
numbers[k] = temp;
}
}
/**
* 插入排序<br/>
* <ul>
* <li>从第一个元素开始,该元素可以认为已经被排序</li>
* <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
* <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
* <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
* <li>将新元素插入到该位置中</li>
* <li>重复步骤2</li>
* </ul>
*
* @param numbers
*/
public static void insertSort(int[] numbers) {
int size = numbers.length, temp, j;
for (int i = 1; i < size; i++) {
temp = numbers[i];
for (j = i; j > 0 && temp < numbers[j - 1]; j--)
numbers[j] = numbers[j - 1];
numbers[j] = temp;
}
}
/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
* 算法参考:<a href="http://www.cnitblog.com/intrl/" mce_href="http://www.cnitblog.com/intrl/">Java部落</a>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
}
view plaincopy to clipboardPRint?
/**
* 插入排序<br/>
* <ul>
* <li>从第一个元素开始,该元素可以认为已经被排序</li>
* <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
* <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
* <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
* <li>将新元素插入到该位置中</li>
* <li>重复步骤2</li>
* </ul>
*
* @param numbers
*/
public static void insertSort(int[] numbers) {
int size = numbers.length, temp, j;
for(int i=1; i<size; i++) {
temp = numbers[i];
for(j = i; j > 0 && temp < numbers[j-1]; j--)
numbers[j] = numbers[j-1];
numbers[j] = temp;
}
}
/**
* 插入排序<br/>
* <ul>
* <li>从第一个元素开始,该元素可以认为已经被排序</li>
* <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
* <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
* <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
* <li>将新元素插入到该位置中</li>
* <li>重复步骤2</li>
* </ul>
*
* @param numbers
*/
public static void insertSort(int[] numbers) {
int size = numbers.length, temp, j;
for(int i=1; i<size; i++) {
temp = numbers[i];
for(j = i; j > 0 && temp < numbers[j-1]; j--)
numbers[j] = numbers[j-1];
numbers[j] = temp;
}
}
归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。参考代码如下:
view plaincopy to clipboardprint?
/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
* 算法参考:<a href="http://www.cnitblog.com/intrl/" mce_href="http://www.cnitblog.com/intrl/">java部落</a>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
* 算法参考:<a href="http://www.cnitblog.com/intrl/" mce_href="http://www.cnitblog.com/intrl/">Java部落</a>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
将之前介绍的所有排序算法整理成NumberSort类,代码
view plaincopy to clipboardprint?
/**
* BubbleSort.class
*/
package test.sort;
import java.util.Random;
/**
* Java实现的排序类
*
* @author cyq
*
*/
public class NumberSort {
/**
* 私有构造方法,禁止实例化
*/
private NumberSort() {
super();
}
/**
* 冒泡法排序<br/>
* <ul>
* <li>比较相邻的元素。如果第一个比第二个大,就交换他们两个。</li>
* <li>对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。</li>
* <li>针对所有的元素重复以上的步骤,除了最后一个。</li>
* <li>持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。</li>
* </ul>
*
* @param numbers
* 需要排序的整型数组
*/
public static void bubbleSort(int[] numbers) {
int temp; // 记录临时中间值
int size = numbers.length; // 数组大小
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (numbers[i] < numbers[j]) { // 交换两数的位置
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
}
}
}
/**
* 快速排序<br/>
* <ul>
* <li>从数列中挑出一个元素,称为“基准”</li>
* <li>重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,
* 该基准是它的最后位置。这个称为分割(partition)操作。</li>
* <li>递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。</li>
* </ul>
*
* @param numbers
* @param start
* @param end
*/
public static void quickSort(int[] numbers, int start, int end) {
if (start < end) {
int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)
int temp; // 记录临时中间值
int i = start, j = end;
do {
while ((numbers[i] < base) && (i < end))
i++;
while ((numbers[j] > base) && (j > start))
j--;
if (i <= j) {
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
i++;
j--;
}
} while (i <= j);
if (start < j)
quickSort(numbers, start, j);
if (end > i)
quickSort(numbers, i, end);
}
}
/**
* 选择排序<br/>
* <ul>
* <li>在未排序序列中找到最小元素,存放到排序序列的起始位置</li>
* <li>再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。</li>
* <li>以此类推,直到所有元素均排序完毕。</li>
* </ul>
*
* @param numbers
*/
public static void selectSort(int[] numbers) {
int size = numbers.length, temp;
for (int i = 0; i < size; i++) {
int k = i;
for (int j = size - 1; j > i; j--) {
if (numbers[j] < numbers[k])
k = j;
}
temp = numbers[i];
numbers[i] = numbers[k];
numbers[k] = temp;
}
}
/**
* 插入排序<br/>
* <ul>
* <li>从第一个元素开始,该元素可以认为已经被排序</li>
* <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
* <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
* <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
* <li>将新元素插入到该位置中</li>
* <li>重复步骤2</li>
* </ul>
*
* @param numbers
*/
public static void insertSort(int[] numbers) {
int size = numbers.length, temp, j;
for (int i = 1; i < size; i++) {
temp = numbers[i];
for (j = i; j > 0 && temp < numbers[j - 1]; j--)
numbers[j] = numbers[j - 1];
numbers[j] = temp;
}
}
/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
* 算法参考:<a href="http://www.cnitblog.com/intrl/" mce_href="http://www.cnitblog.com/intrl/">Java部落</a>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
}
[]
- ››JavaScript拖拽原理的实现
- ››javascript事件列表解说
- ››Javascript代码优化工具UglifyJS
- ››常见的Linux内核中内存分配函数
- ››Java Bean属性值动态设置
- ››JavaScript Confirm 失效的解决办法
- ››JavaScript页面内拖拽原理分析
- ››javascript中select的常用操作
- ››常见的PHP缓存技术分析
- ››javascript+css无刷新实现页面样式的更换
- ››Java Web Services:不使用客户端证书的WS-Securit...
- ››Java开发2.0: 使用Amazon SimpleDB实现云存储,第...
更多精彩
赞助商链接