DCT快速变换
2010-07-25 20:45:40 来源:WEB开发网一、引言
DCT变换是数字图像处理中重要的变换,很多重要的图像算法、图像应用都是基于DCT变换的,如JPEG图像编码方式。对于大尺寸的二维数值矩阵,倘若采用普通的DCT变换来进行,其所花费的时间将是让人难以忍受甚至无法达到实用。而要克服这一难点,DCT变换的快速算法无非是非常吸引人的。
就目前而言,DCT变换的快速算法无非有以下两种方式:
1.由于FFT算法的普便采用,直接利用FFT来实现DCT变换的快速算法相比来说就相对容易。但是此种方法也有不足:计算过程会涉及到复数的运算。由于DCT变换前后的数据都是实数,计算过程中引入复数,而一对复数的加法相当于两对实数的加法,一对复数的乘法相当于四对实数的乘法和两对实数的加法,显然是增加了运算量,也给硬件存储提出了更高的要求。
2.直接在实数域进行DCT快速变换。显然,这种方法相比于前一种而言,计算量和硬件要求都要优于前者。
鉴于此,本文采用第二种方法来实现DCT变换的快速算法。
二、理论推导
限于篇幅,在此不能罗列,具体推导过程可参见《DCT快速新算法及滤波器结构研究与子波变换域图像降噪研究》华南理工大学博士论文。
三、程序实现
DCT快速变换
考虑到DCT变换中的系数要重复计算,可使用查找表来提高运行的效率,只要开始DCT变换之前计算一次,DCT变换中就可以只查找而无需计算系数。
void initDCTParam(int deg)
{
// deg 为DCT变换数据长度的幂
if(bHasInit)
{
return; //不用再计算查找表
}
int total, halftotal, i, group, endstart, factor;
total = 1 << deg;
if(C != NULL) delete []C;
C = (double *)new double[total];
halftotal = total >> 1;
for(i=0; i < halftotal; i++)
C[total-i-1]=(double)(2*i+1);
for(group=0; group < deg-1; group++)
{
endstart=1 << (deg-1-group);
int len = endstart >> 1;
factor=1 << (group+1);
for(int j = 0;j < len; j++)
C[endstart-j-1] = factor*C[total-j-1];
}
for(i=1; i < total; i++)
C[i] = 2.0*cos(C[i]*PI/(total << 1)); ///C[0]空着,没使用
bHasInit=true;
}
更多精彩
赞助商链接