Windows下的高精度计时和高频事件的产生
2006-07-20 11:39:43 来源:WEB开发网 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佽鍨庨崘锝嗗瘱闂備胶顢婂▍鏇㈠箲閸ヮ剙鐏抽柡鍐ㄧ墕缁€鍐┿亜韫囧海顦﹀ù婊堢畺閺屻劌鈹戦崱娆忓毈缂備降鍔庣划顖炲Φ閸曨垰绠抽悗锝庝簽娴犻箖姊洪棃娑欐悙閻庢矮鍗抽悰顕€宕堕澶嬫櫖濠殿噯绲剧€笛囧箲閸ヮ剙钃熼柣鏂挎憸閻熷綊鏌涢…鎴濇灈妞ゎ剙鐗嗛—鍐Χ鎼粹€茬凹缂備緡鍠楅幐鎼佹偩閻戣棄纭€闁绘劕绉靛Λ鍐春閳ь剚銇勯幒鎴濐伀鐎规挷绀侀埞鎴︽偐閹绘帩浼€缂佹儳褰炵划娆撳蓟濞戞矮娌柟瑙勫姇椤ユ繈姊洪柅鐐茶嫰婢т即鏌熼搹顐e磳闁挎繄鍋涢埞鎴犫偓锝庘偓顓涙櫊閺屽秵娼幏灞藉帯闂佹眹鍊曢幊鎰閹惧瓨濯撮柛鎾村絻閸撳崬顪冮妶鍡楃仸闁荤啿鏅涢悾鐑藉Ψ瑜夐崑鎾绘晲鎼粹剝鐏嶉梺缁樻尰濞叉﹢濡甸崟顖氱疀闂傚牊绋愮花鑲╃磽娴h棄鐓愭慨妯稿妿濡叉劙骞樼拠鑼槰闂佸啿鎼崐濠毸囬弶搴撴斀妞ゆ梻銆嬪銉︺亜椤撶偛妲婚柣锝囧厴楠炴帡骞嬮弮鈧悗濠氭⒑鐟欏嫭鍎楅柛妯衡偓鐔插徍濠电姷鏁告慨鐑藉极閸涘﹥鍙忔い鎾卞灩绾惧鏌熼崜褏甯涢柍閿嬪灦閵囧嫰骞掗崱妞惧缂傚倷绀侀ˇ閬嶅极婵犳氨宓侀柛鈩冪⊕閸婄兘鏌涘┑鍡楊伀妞ゆ梹鍔曢埞鎴︽倻閸モ晝校闂佸憡鎸婚悷锔界┍婵犲洦鍤冮柍鍝勫暟閿涙粓姊鸿ぐ鎺戜喊闁告瑥楠搁埢鎾斥堪閸喓鍘搁柣蹇曞仧绾爼宕戦幘璇茬疀濞达絽鎲¢崐顖炴⒑绾懎浜归悶娑栧劦閸┾偓妞ゆ帒鍟惃娲煛娴e湱澧柍瑙勫灴閹瑩寮堕幋鐘辨闂備礁婀辨灙闁硅姤绮庨崚鎺楀籍閸喎浠虹紓浣割儓椤曟娊鏁冮崒娑氬幈闂佸搫娲㈤崝宀勬倶閻樼粯鐓曢柟鑸妼娴滄儳鈹戦敍鍕杭闁稿﹥鐗犲畷婵嬫晝閳ь剟鈥﹂崸妤€鐒垫い鎺嶈兌缁犲墽鈧厜鍋撳┑鐘辩窔閸嬫鈹戦纭烽練婵炲拑绲垮Σ鎰板箳閹冲磭鍠撻幏鐘绘嚑閼稿灚姣愰梻鍌氬€烽懗鑸电仚濠电偛顕崗妯侯嚕椤愩倖瀚氱€瑰壊鍠栧▓銊︾節閻㈤潧校缁炬澘绉瑰鏌ュ箵閹烘繄鍞甸柣鐘烘鐏忋劌顔忛妷褉鍋撶憴鍕碍婵☆偅绻傞~蹇涙惞閸︻厾锛滃┑鈽嗗灠閹碱偊锝炲鍥╃=濞达綁顥撻崝宥夋煙缁嬪灝鏆遍柣锝囧厴楠炲鏁冮埀顒傜不婵犳碍鍋i柛銉戝啰楠囬悗瑙勬尭缁夋挳鈥旈崘顔嘉ч柛鈩兠棄宥囩磽娴e壊鍎愰柛銊ュ缁顓兼径瀣偓閿嬨亜閹哄秶顦︾€殿喖鐏濋埞鎴﹀煡閸℃浠梺鍛婎焼閸曨収娲告俊銈忕到閸燁垶宕愰崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�

本文示例源代码或素材下载
在开发 Windows 下的应用程序时,经常需要用的计时,尤其在一些对时间要求比较高的程序中,计时的精确性是很重要的,本文介绍了两种精确计时的方法,计时的精度可以达到ms级,而且可以认为它是精确的,可以在大多数情况下作为时间的基准。
- 用API函数::timeGetTime()获取从开机到现在经过的ms数,它的返回类型为DWORD类型,因此它的最大计时长度为2^32ms,约等于49天,::timeGetTime()是一个多媒体函数,所以它的优先级是很高的,一般可以将它看成是精确的。
- 用查询系统定时器的计数值的方法,用到的API函数是QueryPerformanceCounter、QueryPerformanceFrequency,方法是用当前计数值减去开始计时时刻的计数值,得到计数差值,再除以系统定时器的频率就是计的时间,通常系统定时器的频率非常高,我在 intel845e 的主板上达到了3579545hz,当然对于不同的主板,它的频率是不同的。程序运行的结果 如图一所示:
图一
这种计时方法要用另外一个线程专门来查询系统定时器的计数值,这就用到了多线程的知识。由于线程的调用是需要处理器时间的,所以在本中,多线程定时器的时间总要落后于多媒体定时器时间。但在中间的任何一个读取时间的时刻都是非常精确的,只是从读取到显示有一个延迟过程。
下面讲一下Windows高频事件的产生,还是利用上面两种方法,Windows下有一个多媒体定时器,用法为一组API函数的调用,它们是:
MMRESULT timeBeginPeriod( UINT uPeriod ) ;
MMRESULT timeSetEvent( UINT uDelay,
UINT uResolution,
LPTIMECALLBACK lpTimeProc,
DWORD dwUser,
UINT fuEvent
);
void CALLBACK TimeProc( UINT uID,
UINT uMsg,
DWORD dwUser,
DWORD dw1,
DWORD dw2
);
MMRESULT timeKillEvent( UINT uTimerID );
MMRESULT timeEndPeriod( UINT uPeriod );
其中timeBeginPeriod是用来设置最高定时精度的,最高精度为1ms,如果要产生间隔为1ms的中断,必须调用timeBeginPeriod(1);当定时器用完之后就要用timeEndPeriod(1);来恢复默认的精度。具体使用方法为在timeBeginPeriod(1)调用之后用timeSetEvent()注册一个回调函数,即一个中断处理过程。它还可以向回调函数传递一个参数,通常可以传送一个窗口句柄之类的东西。而回调函数TimeProc则从dwwUser参数中取出传递的参数使用。在Windows下,可以用这种方法进行1ms精度的定时数据采集,数据发送,但要保证1ms能完成所有的操作和运算。本人经过实践证明,用它来实现控制的精度是足够的。
第二种方法还是使用多线程查询系统定时器计数值,它与上面提到的方法相比有优点也有缺点,缺点是精度不够高,优点是产生的间隔能突破1ms的限制,可以达到更小的间隔,理论上事件产生的频率可以和系统定时器的频率一样。主要示例代码如下:
UINT Timer(LPVOID pParam)
{
QueryPerformanceCounter((LARGE_INTEGER *)& gl_BeginTime );
while(gl_bStart)
{
QueryPerformanceCounter((LARGE_INTEGER *)&gl_CurrentTime );
If(gl_CurrentTime - gl_BeginTime > 1.0/Interval )
{
//定时的事件,比如发送数据到端口,采集数据等
gl_BeginTime = gl_CurrentTime;
}
}
return 1;
}
这是多线程中的一个线程函数,Interval是产生事件的间隔,如果为0.001则为1ms产生一次,理论上如果Interval为1,则以最大的频率产生事件。即可以用Windows产生很高频率的事件,但是由于线程的调用是要有时间的,有的时候可能会造成这个线程一直没有得到执行,从而造成有一段时间没有进行计数,这段时间的定时事件就没有产生了,如果定时的频率越高,丢失的可能性就越大。但如果用它来产生高频随时间变化的随机信号还是很有价值的。这在实时仿真中尤其如此。
具体的实现请参看详细的例子代码。
更多精彩
赞助商链接