WEB开发网
开发学院软件开发C++ 贪婪算法---货箱装船 阅读

贪婪算法---货箱装船

 2008-03-08 12:49:03 来源:WEB开发网   
核心提示:这个问题来自例1 - 2,船可以分步装载,贪婪算法---货箱装船,每步装一个货箱,且需要考虑装载哪一个货箱,算法其余部分所需时间为O (n),因此程序1 3 - 1的总的复杂性为O (nl o gn),根据这种思想可利用如下贪婪准则:从剩下的货箱中,选择重量最小的货箱

  这个问题来自例1 - 2。船可以分步装载,每步装一个货箱,且需要考虑装载哪一个货箱。根据这种思想可利用如下贪婪准则:从剩下的货箱中,选择重量最小的货箱。这种选择次序可以保证所选的货箱总重量最小,从而可以装载更多的货箱。根据这种贪婪策略,首先选择最轻的货箱,然后选次轻的货箱,如此下去直到所有货箱均装上船或船上不能再容纳其他任何一个货箱。 例1-7 假设n =8, [w1 , ... w8 ]=[100,200,50,90,150,50,20,80], c= 4 0 0。利用贪婪算法时,所考察货箱的顺序为7 , 3 , 6 , 8 , 4 , 1 , 5 , 2。货箱7 , 3 , 6 , 8 , 4 , 1的总重量为3 9 0个单位且已被装载,剩下的装载能力为1 0个单位,小于剩下的任何一个货箱。在这种贪婪解决算法中得到[x1 , ..., x8 ] = [ 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 ]且?xi = 6。 定理1-1 利用贪婪算法能产生最佳装载。 证实可以采用如下方式来证实贪婪算法的最优性:令x = [x1 , ..., xn ]为用贪婪算法获得的解,令y =[ y1 , ..., yn ]为任意一个可行解,只需证实n ?i= 1xi ≥n ?i= 1yi 。不失一般性,可以假设货箱都排好了序:即wi≤wi + 1(1≤i≤n)。然后分几步将y 转化为x,转换过程中每一步都产生一个可行的新y,且n ?i = 1yi 大于等于未转化前的值,最后便可证实n ?i = 1xi ≥n ?j = 1yi 。 根据贪婪算法的工作过程,可知在[0, n] 的范围内有一个k,使得xi =1, i≤k且xi =0, i>k。寻找[ 1 ,n]范围内最小的整数j,使得xj≠yj 。若没有这样的j 存在,则n ?i= 1xi =n ?i = 1yi 。假如有这样的j 存在,则j≤k,否则y 就不是一个可行解,因为xj≠yj ,xj = 1且yj = 0。令yj = 1,若结果得到的y 不是可行解,则在[ j+ 1 ,n]范围内必有一个l 使得yl = 1。令yl = 0,由于wj≤wl ,则得到的y 是可行的。而且,得到的新y 至少与原来的y 具有相同数目的1。 经过数次这种转化,可将y 转化为x。由于每次转化产生的新y 至少与前一个y 具有相同数目的1,因此x 至少与初始的y 具有相同的数目1。货箱装载算法的C + +代码实现见程序1 3 - 1。由于贪婪算法按货箱重量递增的顺序装载,程序1 3 - 1首先利用间接寻址排序函数I n d i r e c t S o r t对货箱重量进行排序(见3 . 5节间接寻址的定义),随后货箱便可按重量递增的顺序装载。由于间接寻址排序所需的时间为O (nl o gn)(也可利用9 . 5 . 1节的堆排序及第2章的归并排序),算法其余部分所需时间为O (n),因此程序1 3 - 1的总的复杂性为O (nl o gn)。 程序13-1 货箱装船 template void ContainerLoading(int x[], T w[], T c, int n) {// 货箱装船问题的贪婪算法 // x[i] = 1 当且仅当货箱i被装载, 1<=i<=n // c是船的容量, w 是货箱的重量 // 对重量按间接寻址方式排序 // t 是间接寻址表 int *t = new int [n+1]; I n d i r e c t S o r t ( w, t, n); // 此时, w[t[i]] <= w[t[i+1]], 1<=i < p> // 初始化x for (int i = 1; i <= n; i++) x[i] = 0; // 按重量次序选择物品 for (i = 1; i <= n && w[t[i]] <= c; i++) { x[t[i]] = 1; c -= w[t[i]];} // 剩余容量 delete [] t; }

Tags:贪婪 算法 货箱

编辑录入:爽爽 [复制链接] [打 印]
赞助商链接