应用事件探查器优化SQL Server系统
2007-05-15 09:32:11 来源:WEB开发网传统的Trace分析方法有两种。一种是使用Profiler工具本身。比如说可以使用Profiler的Filter功能过滤出那些运行时间超过10秒以上的语句,或按照CPU排序找出最耗费CPU的语句等。另一种是把Trace文件导入到数据库中,然后使用T-SQL语句来进行统计分析。这两种方法对较小的Trace文件是有效的。但是,如果Trace文件数目比较多比较大(如4个500MB以上的trace文件),那么这两种方法就有很大的局限性。其局限性之一是因为文件巨大的原因,分析和统计都非常不易,常常使你无法从全局的高度提纲挈领地掌握所有语句的执行性能。你很容易被一些语句迷惑而把精力耗费在上面,而实际上它却不是真正需要关注的关键语句。局限性之二是你发现尽管很多语句模式都非常类似(仅仅是执行时参数不同),却没有一个简单的方法把他们归类到一起进行统计。简而言之,你无法轻而易举地得到数据库系统的访问模式,无法在优化的时候做到高屋建瓴,纲举目张。这就是传统分析方法的局限性。使用下面介绍的Read80trace工具以及自定义的存储过程可以克服这样的局限性。
Read80trace工具介绍以及它的Normalization 功能
Read80Trace工具是一个命令行工具。使用Read80Trace工具可以大大节省分析Trace文件的时间,有事半功倍的效果。Read80Trace的主要工作原理是读取Trace文件,然后对语句进行Normalize (标准化),导入到数据库,生成性能统计分析的HTML页面。另外,Read80trace可以生成RML文件,然后OSTRESS工具使用RML文件多线程地重放Trace文件中的所有事件。这对于那些想把Profiler捕获的语句在另外一台服务器上重放成为可能。本文不详细介绍Read80trace或OStress工具,有兴趣的读者请自行参阅相关资料,相关软件可以从微软网站下载(注:软件名称为RML)
我要利用的是Read80Trace的标准化功能。什么是标准化?就是把那些语句模式类似,但参数不一样的语句全部归类到一起。举例说Trace中有几条语句如下:select * from authors where au_lname = 'white'
select * from authors where au_lname = 'green'
select * from authors where au_lname = 'carson'
经过标准化后,上面的语句就变成如下的样子:
select * from authors where au_lname = {str}
select * from authors where au_lname = {str}
select * from authors where au_lname = {str}
有了标准化后的语句,统计出数据库系统的访问模式就不再是难事。运行Read80trace 的时候我一般使用如下的命令行:Read80trace –f –dmydb –Imytrace.trc
其中-f开关是不生成RML文件,因为我不需要重放的功能。生成的RML文件比较大,建议读者如果不需要重放的话,也使用-f开关。
-d开关告诉read80trace把trace文件的处理结果存到mydb数据库中。我们后面创建的存储过程正是访问read80trace在mydb中生成的表来进行统计的。-I开关是指定要分析的的trace文件名。Read80trace工具很聪明,如果该目录下有Profiler产生的一系列Trace文件,如mytrace.trc,mytrace1.trc,mytrace2.trc等,那么它会一一顺序读取进行处理。
除了上面介绍的外,Read80trace还有很多其它有趣的开关。比如说使用-i开关使得Read80trace可以从zip或CAB文件中读取trace文件,不用自己解压。所有开关在Read80trace.chm中有详细介绍。我最欣赏的地方是read80trace的性能。分析几个GB大小的trace文件不足一小时就搞定了。我的计算机是一台内存仅为512MB的老机器,有这样的性能我很满意。
你也许会使用read80trace分析压力测试产生的trace文件。我建议还是分析从生产环境中捕获的Trace文件为好。因为很多压力测试工具都不能够真正模拟现实的环境,其得到的trace文件也就不能真实反映实际的情况。甚至有些压力测试工具是循环执行自己写的语句,更不能反映准确的访问模式。建议仅仅把压力测试产生的trace作为参考使用。
更多精彩
赞助商链接