迭代算法与递归算法的概念及区别
2009-01-25 11:58:03 来源:WEB开发网【问题】 背包问题
问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。
对于第i件物品的选择考虑有两种可能:
(1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。
(2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。
按以上思想写出递归算法如下:
以下是引用片段:
try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
{/*考虑物品i包含在当前方案中的可能性*/
if(包含物品i是可以接受的)
{将物品i包含在当前方案中;
if(i
try(i+1,tw+物品i的重量,tv);
else
/*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
恢复物品i不包含状态;
}
/*考虑物品i不包含在当前方案中的可能性*/
if(不包含物品i仅是可男考虑的)
if(i
try(i+1,tw,tv-物品i的价值);
else
/*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
}
为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:
物品 0 1 2 3
重量 5 3 2 1
价值 4 4 3 1
并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。
按上述算法编写函数和程序如下:
【程序】
以下是引用片段:
#include
#defineN100
doublelimitW,totV,maxV;
intoption[N],cop[N];
struct{doubleweight;
doublevalue;
}a[N];
intn;
voidfind(inti,doubletw,doubletv)
{intk;
/*考虑物品i包含在当前方案中的可能性*/
if(tw+a.weight<=limitW)
{cop=1;
if(i
else
{for(k=0;k
option[k]=cop[k];
maxv=tv;
}
cop=0;
}
/*考虑物品i不包含在当前方案中的可能性*/
if(tv-a.value>maxV)
if(i
else
{for(k=0;k
option[k]=cop[k];
maxv=tv-a.value;
}
}
voidmain()
{intk;
doublew,v;
printf(“输入物品种数
”);
scanf((“%d”,&n);
printf(“输入各物品的重量和价值
”);
for(totv=0.0,k=0;k
{scanf(“%1f%1f”,&w,&v);
a[k].weight=w;
a[k].value=v;
totV+=V;
}
printf(“输入限制重量
”);
scanf(“%1f”,&limitV);
maxv=0.0;
for(k=0;kfind(0,0.0,totV);
for(k=0;k
if(option[k])printf(“%4d”,k+1);
printf(“
总价值为%.2f
”,maxv);
}
更多精彩
赞助商链接