开发学院软件开发Java 用 WEKA 进行数据挖掘,第 2 部分: 分类和群集 阅读

用 WEKA 进行数据挖掘,第 2 部分: 分类和群集

 2010-06-23 00:00:00 来源:WEB开发网   
核心提示: 回归问题:“对于新的 BMW M5 车型我们该如何定价?” 回归模型只能给出这个问题的一个数值答案,回归模型会使用 BMW 和 M5 的过去销售数据来基于所售汽车的属性和卖点确定人们过去在这个经销店购买车的价格,用 WEKA 进行数据挖掘,第 2 部分: 分类和群集(2)

回归

问题:“对于新的 BMW M5 车型我们该如何定价?” 回归模型只能给出这个问题的一个数值答案。回归模型会使用 BMW 和 M5 的过去销售数据来基于所售汽车的属性和卖点确定人们过去在这个经销店购买车的价格。然后,回归模型允许 BMW 经销店插入新车的属性来确定其价格。

比如:Selling Price = $25,000 + ($2900 * Liters in Engine) + ($9000 * isSedan) + ($11,000 * isConvertible) + ($100 * inches of car) + ($22,000 * isM)。

分类

问题:“那么客户 X 有多大的可能会购买最新的 BMW M5 呢?” 创建一个分类树(一个决策树),并借此挖掘数据就可以确定这个人购买一辆新的 M5 的可能性有多大。这个树上的节点可以是年龄、收入水平、目前拥有的车的数量、婚姻状况、有无孩子、房主还是租户。对这个决策树使用此人的这些属性就可以确定他购买 M5 的可能性。

群集

问题是:“哪个年龄组最喜欢银色的 BMW M5?”这就需要挖掘数据来对比过去购车者的年龄和过去购买的车的颜色。从这些数据,就能够找到某个年龄组(比如 22-30 岁)具有订购某种颜色的 BMW M5 的更高的倾向性(75% 购买蓝色)。同样地,它也可显示另一个不同的年龄组(比如 55-62)则更倾向于订购银色的 BMW(65 % 购买银色,20 % 购买灰色)。这些数据,当挖掘后,倾向于集中于某些特定年龄组和特定颜色周围,方便用户快速判断该数据内的模式。

最近邻

问题:“当人们购买 BMW M5 时,他们倾向于同时购买其他哪些选项?”数据挖掘显示,人们入店并购买一辆 BMW M5 时,他们还会倾向于购买与之配套的行李箱。(这也就是所谓的购物篮分析)。使用此数据,汽车经销店就会将配套行李箱的促销广告放在店面的显眼处,甚至会在报纸上做促销广告,如果他们购买 M5,配套行李箱将免费/打折,以期增加销售。

上一页  1 2 3 4 5 6 7  下一页

Tags:WEKA 进行 数据挖掘

编辑录入:爽爽 [复制链接] [打 印]
[]
  • 好
  • 好的评价 如果觉得好,就请您
      0%(0)
  • 差
  • 差的评价 如果觉得差,就请您
      0%(0)
赞助商链接